A Minimal Model of Metabolism-Based Chemotaxis

Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis.

[1]  Luke E. Ulrich,et al.  PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis , 2010, Proceedings of the National Academy of Sciences of the United States of America.

[2]  G. Alexandre Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. , 2010, Microbiology.

[3]  N. Boyce Life itself , 2018, The Lancet.

[4]  Igor B. Zhulin,et al.  Energy Taxis Is the Dominant Behavior in Azospirillum brasilense , 2000, Journal of bacteriology.

[5]  Eyal Shimoni,et al.  The bacterial flagellar switch complex is getting more complex , 2008, The EMBO journal.

[6]  A. Cornish-Bowden,et al.  Organizational invariance and metabolic closure: analysis in terms of (M,R) systems. , 2006, Journal of theoretical biology.

[7]  J P Armitage,et al.  Inverted behavioural responses in wild-type Rhodobacter sphaeroides to temporal stimuli. , 2000, FEMS microbiology letters.

[8]  H. Ingmer,et al.  Energy Taxis Drives Campylobacter jejuni toward the Most Favorable Conditions for Growth , 2009, Applied and Environmental Microbiology.

[9]  J. Stock,et al.  Signal Transduction: Receptor Clusters as Information Processing Arrays , 2002, Current Biology.

[10]  J. V. Hurley,et al.  Chemotaxis , 2005, Infection.

[11]  R. Bourret,et al.  Two-component signal transduction. , 2010, Current opinion in microbiology.

[12]  D. Koshland,et al.  Quantitation of the sensory response in bacterial chemotaxis. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. L. Hazelbauer,et al.  Bacterial chemoreceptors: providing enhanced features to two-component signaling. , 2010, Current opinion in microbiology.

[14]  Laura E. DeMare,et al.  Wetware: A Computer in Every Living Cell , 2011, The Yale Journal of Biology and Medicine.

[15]  I. Zhulin,et al.  Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium , 1997, Journal of bacteriology.

[16]  Michael Eisenbach,et al.  A hitchhiker's guide through advances and conceptual changes in chemotaxis , 2007, Journal of cellular physiology.

[17]  Rebecca E Parales,et al.  Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. , 2008, Environmental microbiology.

[18]  Richard A. Goldstein,et al.  Evolution of Taxis Responses in Virtual Bacteria: Non-Adaptive Dynamics , 2008, PLoS Comput. Biol..

[19]  Yoshiyuki Sowa,et al.  Bacterial flagellar motor , 2004, Quarterly Reviews of Biophysics.

[20]  Roderick K. Clayton,et al.  Studies in the photataxis of Rhodospirillum rubrum. , 1953, Archiv für Mikrobiologie.

[21]  B L Taylor,et al.  Role of proton motive force in sensory transduction in bacteria. , 1983, Annual review of microbiology.

[22]  I. Zhulin,et al.  In search of higher energy: metabolism‐dependent behaviour in bacteria , 1998, Molecular microbiology.

[23]  Christine Josenhans,et al.  Bacterial energy taxis: a global strategy? , 2010, Archives of Microbiology.

[24]  Igor B. Zhulin,et al.  More Than One Way To Sense Chemicals , 2001, Journal of bacteriology.

[25]  R K CLAYTON,et al.  Studies in the phototaxis of Rhodospirillum rubrum. II. The relation between phototaxis and photosynthesis. , 1953, Archiv fur Mikrobiologie.

[26]  H. Maturana,et al.  Autopoiesis and Cognition : The Realization of the Living (Boston Studies in the Philosophy of Scie , 1980 .

[27]  Eric Smith,et al.  Universality in intermediary metabolism. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Stock,et al.  Signal transduction: Hair brains in bacterial chemotaxis , 2000, Current Biology.

[29]  Harold J. Morowitz,et al.  Energy flow and the organization of life , 2007, Complex..

[30]  Laura L Kiessling,et al.  Chemical probes of bacterial signal transduction reveal that repellents stabilize and attractants destabilize the chemoreceptor array. , 2008, ACS chemical biology.

[31]  M. Eisenbach,et al.  Chemotactic‐like response of Escherichia coli cells lacking the known chemotaxis machinery but containing overexpressed CheY , 1999, Molecular microbiology.

[32]  J P Armitage,et al.  Metabolism is required for chemotaxis to sugars in Rhodobacter sphaeroides. , 1998, Microbiology.

[33]  Xabier E. Barandiaran,et al.  Defining Agency: Individuality, Normativity, Asymmetry, and Spatio-temporality in Action , 2009, Adapt. Behav..

[34]  I. Zhulin,et al.  Behavioral responses of Escherichia coli to changes in redox potential. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  W. Ashby,et al.  Design for a brain; the origin of adaptive behavior , 2011 .

[36]  B. L. Taylor,et al.  Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis , 2006, Molecular microbiology.

[37]  K. Ruiz-Mirazo,et al.  A Universal Definition of Life: Autonomy and Open-Ended Evolution , 2004, Origins of life and evolution of the biosphere.

[38]  J. Armitage,et al.  Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti--variations on a theme? , 1997, Microbiology.

[39]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[40]  H. Berg,et al.  Transient response to chemotactic stimuli in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[42]  Xabier E. Barandiaran,et al.  Adaptivity: From Metabolism to Behavior , 2008, Adapt. Behav..

[43]  H. Heller,et al.  Principles of Life , 2010 .

[44]  S. Caplan,et al.  Fumarate modulates bacterial flagellar rotation by lowering the free energy difference between the clockwise and counterclockwise states of the motor. , 1998, Journal of molecular biology.

[45]  Dennis Bray,et al.  The Chemotactic Behavior of Computer-Based Surrogate Bacteria , 2007, Current Biology.

[46]  Robert D. Simoni,et al.  Julius Adler's Contributions to Understanding Bacterial Chemotaxis , 2006 .

[47]  S. A. Kauffman,et al.  Autocatalytic sets of proteins , 1986, Origins of life and evolution of the biosphere.

[48]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[49]  H. Maturana,et al.  Autopoiesis and Cognition , 1980 .

[50]  Igor B Zhulin,et al.  Aer and Tsr guide Escherichia coli in spatial gradients of oxidizable substrates. , 2003, Microbiology.

[51]  J. Adler,et al.  Chemoreceptors in bacteria. , 1969, Science.

[52]  J. S. Parkinson,et al.  Collaborative signaling by bacterial chemoreceptors. , 2005, Current opinion in microbiology.

[53]  Ezequiel A. Di Paolo,et al.  Integrating Autopoiesis and Behavior: An Exploration in Computational Chemo-ethology , 2009, Adapt. Behav..

[54]  R. Macnab,et al.  The gradient-sensing mechanism in bacterial chemotaxis. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[55]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[56]  S. Chervitz,et al.  The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. , 1997, Annual review of cell and developmental biology.

[57]  Xabier E. Barandiaran,et al.  Behavioral Metabolution - Metabolism Based Behavior Enables New Forms of Adaptation and Evolution , 2010, ALIFE.