Coupled‐Cluster Calculations for Large Molecular and Extended Systems

[1]  F. Coester,et al.  Bound states of a many-particle system , 1958 .

[2]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[3]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[4]  Josef Paldus,et al.  Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the B H 3 Molecule , 1972 .

[5]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[6]  G. Torrie,et al.  Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid , 1974 .

[7]  N. Nakatsuji,et al.  Cluster expansion of the wavefunction. Excited states , 1978 .

[8]  Hiroshi Nakatsuji,et al.  Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories , 1979 .

[9]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[10]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[11]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[12]  Michael C. Zerner,et al.  The linked singles and doubles model: An approximate theory of electron correlation based on the coupled‐cluster ansatz , 1982 .

[13]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[14]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[15]  H. Monkhorst,et al.  Some aspects of the time-dependent coupled-cluster approach to dynamic response functions , 1983 .

[16]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .

[17]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[18]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[19]  Henry F. Schaefer,et al.  A new implementation of the full CCSDT model for molecular electronic structure , 1988 .

[20]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[21]  V. Kellö,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[22]  Rodney J. Bartlett,et al.  The equation-of-motion coupled-cluster method: Excitation energies of Be and CO , 1989 .

[23]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[24]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[25]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[26]  Trygve Helgaker,et al.  Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O , 1990 .

[27]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[28]  N. Oliphant,et al.  Coupled‐cluster method truncated at quadruples , 1991 .

[29]  Michael J. Frisch,et al.  The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets , 1992 .

[30]  R. Bartlett,et al.  The coupled‐cluster single, double, triple, and quadruple excitation method , 1992 .

[31]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[32]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[33]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[34]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[35]  Donald C. Comeau,et al.  The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states , 1993 .

[36]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[37]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[38]  P. Piecuch,et al.  Orthogonally spin‐adapted single‐reference coupled‐cluster formalism: Linear response calculation of static properties , 1995 .

[39]  John D. Watts,et al.  Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies , 1995 .

[40]  John D. Watts,et al.  Iterative and non-iterative triple excitation corrections in coupled-cluster methods for excited electronic states: the EOM-CCSDT-3 and EOM-CCSD(T̃) methods , 1996 .

[41]  Poul Jørgensen,et al.  Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies , 1996 .

[42]  Marcel Nooijen,et al.  Many‐body similarity transformations generated by normal ordered exponential excitation operators , 1996 .

[43]  Rodney J. Bartlett,et al.  A new method for excited states: Similarity transformed equation-of-motion coupled-cluster theory , 1997 .

[44]  R. Bartlett,et al.  Correlated calculations of molecular dynamic polarizabilities , 1997 .

[45]  Josef Paldus,et al.  The convergence of energy expansions for molecules in electrostatic fields: A linear‐response coupled‐cluster study , 1997 .

[46]  Rodney J. Bartlett,et al.  Similarity transformed equation-of-motion coupled-cluster study of ionized, electron attached, and excited states of free base porphin , 1997 .

[47]  John F. Stanton,et al.  Triple excitation effects in coupled-cluster calculations of frequency-dependent hyperpolarizabilities , 1998 .

[48]  H. Nakatsuji,et al.  SAC-CI Study on the Excited and Ionized States of Free-Base Porphin: Rydberg Excited States and Effect of Polarization and Rydberg Functions , 1998 .

[49]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[50]  Benoît Champagne,et al.  Assessment of Conventional Density Functional Schemes for Computing the Polarizabilities and Hyperpolarizabilities of Conjugated Oligomers: An Ab Initio Investigation of Polyacetylene Chains , 1998 .

[51]  Manuela Merchán,et al.  Interpretation of the electronic absorption spectrum of free base porphin by using multiconfigurational second-order perturbation theory , 1998 .

[52]  Rodney J. Bartlett,et al.  Coupled-cluster calculations of the electronic excitation spectrum of free base porphin in a polarized basis , 1998 .

[53]  John F. Stanton,et al.  The effect of triple excitations in coupled cluster calculations of frequency-dependent polarizabilities , 1998 .

[54]  J. G. Snijders,et al.  Erratum: “Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains” [J. Chem. Phys. 109, 10489 (1998)] , 1999 .

[55]  Josef Paldus,et al.  A Critical Assessment of Coupled Cluster Method in Quantum Chemistry , 2007 .

[56]  P. Dugourd,et al.  Direct measurement of the electric polarizability of isolated C60 molecules , 1999 .

[57]  Benoît Champagne,et al.  Electric field dependence of the exchange-correlation potential in molecular chains , 1999 .

[58]  Ground state correlations and mean field in 16 O , 1998, nucl-th/9802029.

[59]  J. Louderback,et al.  Absolute measurement of the optical polarizability of C60 , 2000 .

[60]  Denis Jacquemin,et al.  Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push−Pull π-Conjugated Systems† , 2000 .

[61]  Rodney J. Bartlett,et al.  Coupled-cluster theory for excited electronic states: The full equation-of-motion coupled-cluster single, double, and triple excitation method , 2001 .

[62]  P. Piecuch,et al.  New type of noniterative energy corrections for excited electronic states: Extension of the method of moments of coupled-cluster equations to the equation-of-motion coupled-cluster formalism , 2001 .

[63]  Karol Kowalski,et al.  The active-space equation-of-motion coupled-cluster methods for excited electronic states: Full EOMCCSDt , 2001 .

[64]  Karol Kowalski,et al.  Excited-state potential energy curves of CH+: a comparison of the EOMCCSDt and full EOMCCSDT results , 2001 .

[65]  K. Ruud,et al.  The dispersion of the polarizability of C60: A confirmation of recent experimental results through theoretical calculations , 2001 .

[66]  W. Hess,et al.  Selective laser desorption of ionic surfaces: Resonant surface excitation of KBr , 2001 .

[67]  So Hirata,et al.  Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis , 2001 .

[68]  Karina Sendt,et al.  Switchable electronic coupling in model oligoporphyrin molecular wires examined through the measurement and assignment of electronic absorption spectra. , 2002, Journal of the American Chemical Society.

[69]  D. Doren,et al.  Rapid calculation of the structures of solutions with ab initio interaction potentials , 2002 .

[70]  Lluís Blancafort,et al.  Ultrafast Decay of Electronically Excited Singlet Cytosine via a π,π* to nO,π* State Switch , 2002 .

[71]  Michael J. McGuire,et al.  Recent advances in electronic structure theory: Method of moments of coupled-cluster equations and renormalized coupled-cluster approaches , 2002 .

[72]  Tomoo Miyahara,et al.  Ground and excited states of linked and fused zinc porphyrin dimers: Symmetry adapted cluster (SAC)—configuration interaction (CI) study , 2002 .

[73]  Kurt V. Mikkelsen,et al.  Linear response functions for coupled cluster/molecular mechanics including polarization interactions , 2003 .

[74]  K. Mikkelsen,et al.  Nonlinear optical response properties of molecules in condensed phases using the coupled cluster/dielectric continuum or molecular mechanics methods , 2003 .

[75]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[76]  S. Hirata Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .

[77]  Manuela Merchán,et al.  Ultrafast internal conversion of excited cytosine via the lowest pipi electronic singlet state. , 2003, Journal of the American Chemical Society.

[78]  Explicit time-dependence of basis functions and its consequences , 2004 .

[79]  S. Matsika Radiationless Decay of Excited States of Uracil through Conical Intersections , 2004 .

[80]  T. Daniel Crawford,et al.  Local correlation in coupled cluster calculations of molecular response properties , 2004 .

[81]  D. J. Dean,et al.  Coupled-cluster approach to nuclear physics , 2004 .

[82]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[83]  Wolfgang Domcke,et al.  Ab initio studies on the photophysics of the guanine?cytosine base pair , 2004 .

[84]  M Hjorth-Jensen,et al.  Coupled cluster calculations of ground and excited states of nuclei. , 2004, Physical review letters.

[85]  Thomas Bondo Pedersen,et al.  Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. , 2004, The Journal of chemical physics.

[86]  Karol Kowalski,et al.  New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. , 2004, The Journal of chemical physics.

[87]  So Hirata,et al.  Higher-order equation-of-motion coupled-cluster methods. , 2004, The Journal of chemical physics.

[88]  Theresa L Windus,et al.  Thermodynamic properties of the C5, C6, and C8 n-alkanes from ab initio electronic structure theory. , 2005, The journal of physical chemistry. A.

[89]  Serguei Patchkovskii,et al.  On the origin of the ultrafast internal conversion of electronically excited pyrimidine bases. , 2005, The journal of physical chemistry. A.

[90]  Steven E. J. Bell,et al.  Reduced–size polarized basis sets for calculations of molecular electric properties. III. Second–row atoms , 2005 .

[91]  Toward a computational photobiology , 2005 .

[92]  P. Piecuch,et al.  Active-space coupled-cluster study of electronic states of Be3. , 2005, The Journal of chemical physics.

[93]  K. M. Beck,et al.  Laser control of desorption through selective surface excitation. , 2005, The journal of physical chemistry. B.

[94]  So Hirata,et al.  Symbolic Algebra in Quantum Chemistry , 2006 .

[95]  Marat Valiev,et al.  Hybrid coupled cluster and molecular dynamics approach: application to the excitation spectrum of cytosine in the native DNA environment. , 2006, The Journal of chemical physics.

[96]  Paweł Sałek,et al.  Assessment of a Coulomb-attenuated exchange-correlation energy functional. , 2006, Physical chemistry chemical physics : PCCP.

[97]  Mihály Kállay,et al.  Calculation of frequency-dependent polarizabilities using general coupled-cluster models , 2006 .

[98]  Combined multireference configuration interaction/ molecular dynamics approach for calculating solvatochromic shifts: application to the n(O) --> pi* electronic transition of formaldehyde. , 2006, The journal of physical chemistry. A.

[99]  Jacob Kongsted,et al.  Statistical mechanically averaged molecular properties of liquid water calculated using the combined coupled cluster/molecular dynamics method. , 2006, The Journal of chemical physics.

[100]  Mark S. Gordon,et al.  A Novel Approach to Parallel Coupled Cluster Calculations: Combining Distributed and Shared Memory Techniques for Modern Cluster Based Systems , 2007 .

[101]  I. Nezbeda,et al.  Efficient multiparticle sampling in Monte Carlo simulations on fluids: application to polarizable models. , 2007, The Journal of chemical physics.

[102]  So Hirata,et al.  Second- and third-order triples and quadruples corrections to coupled-cluster singles and doubles in the ground and excited states. , 2007, The Journal of chemical physics.

[103]  T. Crawford,et al.  An Introduction to Coupled Cluster Theory for Computational Chemists , 2007 .

[104]  Peter Pulay,et al.  High accuracy benchmark calculations on the benzene dimer potential energy surface , 2007 .

[105]  Mihály Kállay,et al.  Calculation of frequency-dependent hyperpolarizabilities using general coupled-cluster models. , 2007, The Journal of chemical physics.

[106]  Peter Pulay,et al.  Parallel Calculation of Coupled Cluster Singles and Doubles Wave Functions Using Array Files. , 2007, Journal of chemical theory and computation.

[107]  A. J. Sadlej,et al.  Reduced-size polarized basis sets for calculations of molecular electric properties. IV. First-row transition metals , 2007 .

[108]  Mark S. Gordon,et al.  Coupled cluster algorithms for networks of shared memory parallel processors , 2007, Comput. Phys. Commun..

[109]  J. Hammond,et al.  Dynamic polarizabilities of polyaromatic hydrocarbons using coupled-cluster linear response theory. , 2007, The Journal of chemical physics.

[110]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[111]  R J Bartlett,et al.  Parallel implementation of electronic structure energy, gradient, and Hessian calculations. , 2008, The Journal of chemical physics.

[112]  Marat Valiev,et al.  Noniterative corrections to equation‐of‐motion coupled‐cluster excited state energies based on the reduced method of moments of coupled cluster equations , 2008 .

[113]  J. Hammond,et al.  Coupled-cluster dynamic polarizabilities including triple excitations. , 2008, The Journal of chemical physics.

[114]  Marat Valiev,et al.  Large-scale parallel calculations with combined coupled cluster and molecular mechanics formalism: Excitation energies of zinc–porphyrin in aqueous solution , 2008 .

[115]  Emily A Carter,et al.  Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. , 2008, Annual review of physical chemistry.

[116]  Anna I Krylov,et al.  A noniterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions. , 2008, The Journal of chemical physics.

[117]  Karol Kowalski,et al.  Coupled cluster calculations for static and dynamic polarizabilities of C60. , 2008, The Journal of chemical physics.

[118]  Walter Thiel,et al.  Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. , 2008, The Journal of chemical physics.

[119]  Monitoring biological membrane-potential changes: a CI QM/MM study. , 2008, The journal of physical chemistry. B.

[120]  Tomasz Janowski,et al.  Efficient Parallel Implementation of the CCSD External Exchange Operator and the Perturbative Triples (T) Energy Calculation. , 2008, Journal of chemical theory and computation.

[121]  Niranjan Govind,et al.  Excited states of DNA base pairs using long-range corrected time-dependent density functional theory. , 2009, The journal of physical chemistry. A.

[122]  K. Kowalski Nested variant of the method of moments of coupled cluster equations for vertical excitation energies and excited-state potential energy surfaces. , 2009, The Journal of chemical physics.

[123]  Tomasz Janowski,et al.  Quantum chemistry in parallel with PQS , 2009, J. Comput. Chem..

[124]  K. Kowalski,et al.  Excitons in Potassium Bromide: A Study using Embedded Time-dependent Density Functional Theory and Equation-of-Motion Coupled Cluster Methods , 2009 .

[125]  Marat Valiev,et al.  Excitation energies of zinc porphyrin in aqueous solution using long-range corrected time-dependent density functional theory. , 2009, The journal of physical chemistry. A.

[126]  Rodney J Bartlett,et al.  Parallel implementation of the equation-of-motion coupled-cluster singles and doubles method and application for radical adducts of cytosine. , 2009, The Journal of chemical physics.