Second-Order Asymptotics for Source Coding, Dense Coding, and Pure-State Entanglement Conversions

We introduce two variants of the information spectrum relative entropy defined by Tomamichel and Hayashi, which have the particular advantage of satisfying the data-processing inequality, i.e., monotonicity under quantum operations. This property allows us to obtain one-shot bounds for various information-processing tasks in terms of these quantities. Moreover, these relative entropies have a second-order asymptotic expansion, which in turn yields tight second-order asymptotics for optimal rates of these tasks in the independent and identically distributed setting. The tasks studied in this paper are fixed-length quantum source coding, noisy dense coding, entanglement concentration, pure-state entanglement dilution, and transmission of information through a classical-quantum channel. In the latter case, we retrieve the second-order asymptotics obtained by Tomamichel and Tan. Our results also yield the known second-order asymptotics of fixed-length classical source coding derived by Hayashi. The second-order asymptotics of entanglement concentration and dilution provide a refinement of the inefficiency of these protocols-a quantity which, in the case of entanglement dilution, was studied by Harrow and Lo. We prove how the discrepancy between the optimal rates of these two processes in the second-order implies the irreversibility of entanglement concentration established by Kumagai and Hayashi. In addition, the spectral divergence rates of the information spectrum approach (ISA) can be retrieved from our relative entropies in the asymptotic limit. This enables us to directly obtain the more general results of the ISA from our one-shot bounds.

[1]  Amin Gohari,et al.  Quantum Achievability Proof via Collision Relative Entropy , 2013, IEEE Transactions on Information Theory.

[2]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[3]  N. Datta,et al.  Quantum Coding Theorems for Arbitrary Sources, Channels and Entanglement Resources , 2006, quant-ph/0610003.

[4]  Nilanjana Datta,et al.  Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.

[5]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[6]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[7]  M. Nielsen,et al.  Interdisciplinary Physics: Biological Physics, Quantum Information, etc. , 2001 .

[8]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[9]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  M. Horodecki Limits for compression of quantum information carried by ensembles of mixed states , 1997, quant-ph/9712035.

[11]  Vincent Yan Fu Tan,et al.  Second-Order Asymptotics of Classical-Quantum Channels , 2013, ArXiv.

[12]  Ke Li,et al.  Second Order Asymptotics for Quantum Hypothesis Testing , 2012, ArXiv.

[13]  H. Yuen Coding theorems of quantum information theory , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[14]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[15]  R. Jozsa,et al.  On quantum coding for ensembles of mixed states , 2000, quant-ph/0008024.

[16]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[17]  Nilanjana Datta,et al.  Asymptotic Entanglement Manipulation of Bipartite Pure States , 2008, IEEE Transactions on Information Theory.

[18]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[19]  Masahito Hayashi,et al.  An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.

[20]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[21]  Masahito Hayashi,et al.  Second order asymptotics for random number generation , 2013, 2013 IEEE International Symposium on Information Theory.

[22]  M. Nielsen,et al.  Separable states are more disordered globally than locally. , 2000, Physical review letters.

[23]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[24]  Nilanjana Datta,et al.  A Smooth Entropy Approach to Quantum Hypothesis Testing and the Classical Capacity of Quantum Channels , 2011, IEEE Transactions on Information Theory.

[25]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[26]  R. Bhatia Matrix Analysis , 1996 .

[27]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[28]  Nilanjana Datta,et al.  Entanglement cost for sequences of arbitrary quantum states , 2007, 0704.1957.

[29]  Jozsa,et al.  General fidelity limit for quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  N. Datta,et al.  The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.

[31]  Debbie W. Leung,et al.  Classical capacity of a noiseless quantum channel assisted by noisy entanglement , 2001, Quantum Inf. Comput..

[32]  Masahito Hayashi General formulas for fixed-length quantum entanglement concentration , 2006, IEEE Transactions on Information Theory.

[33]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[34]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[35]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[36]  Masahito Hayashi,et al.  Entanglement concentration is irreversible. , 2013, Physical review letters.

[37]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[38]  Sergio Verdú,et al.  Nonasymptotic noisy lossy source coding , 2013, ITW.

[39]  Nilanjana Datta,et al.  Beyond i.i.d. in Quantum Information Theory , 2006, 2006 IEEE International Symposium on Information Theory.

[40]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[41]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[42]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[43]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[44]  William Matthews,et al.  Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.

[45]  Andreas Winter Scalable programmable quantum gates and a new aspect of the additivity problem for the classical capacity of quantum channels , 2002 .

[46]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[47]  Masahito Hayashi,et al.  Second-Order Asymptotics in Fixed-Length Source Coding and Intrinsic Randomness , 2005, IEEE Transactions on Information Theory.

[48]  G. Vidal,et al.  Approximate transformations and robust manipulation of bipartite pure-state entanglement , 1999, quant-ph/9910099.

[49]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[50]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[51]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[52]  Sergio Verdú,et al.  Channels with cost constraints: Strong converse and dispersion , 2013, ISIT.

[53]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[54]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[55]  A. Harrow,et al.  A tight lower bound on the classical communication cost of entanglement dilution , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[56]  M. Hayashi Exponents of quantum fixed-length pure-state source coding , 2002, quant-ph/0202002.