Harnessing exciton-polaritons for digital computing, neuromorphic computing, and optimization

Polaritons are quasiparticles resulting from strong quantum coupling of light and matter. Peculiar properties of polaritons are a mixture of physics usually restricted to one of these realms, making them interesting for study not only from the fundamental point of view but also for applications. In recent years, many studies have been devoted to the potential use of exciton-polaritons for computing. Very recently, it has been shown experimentally that they can be harnessed not only for digital computing, but also for optical neural networks and for optimization related to hard computational problems. Here, we provide a brief review of recent studies and most important results in this area. We focus our attention in particular on the emerging concepts of non-von-Neumann computing schemes and their realizations in exciton-polariton systems.

[1]  Hongkun Park,et al.  Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor , 2023, Nature Nanotechnology.

[2]  J. Yao,et al.  A room-temperature electrical-field-enhanced ultrafast switch in organic microcavity polariton condensates , 2022, 2211.13300.

[3]  D. Sanvitto,et al.  Electrical switching of a chiral lasing from polariton condensate in a Rashba-Dresselhaus regime , 2022, 2211.11852.

[4]  T. Paterek,et al.  Phase Measurement Beyond the Standard Quantum Limit Using a Quantum Neuromorphic Platform , 2022, Physical Review Applied.

[5]  Haiyang Li,et al.  Optically Controlled Femtosecond Polariton Switch at Room Temperature. , 2022, Physical review letters.

[6]  N. Berloff,et al.  Physics-Enhanced Bifurcation Optimisers: All You Need is a Canonical Complex Network , 2022, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  T. Krisnanda,et al.  The roles of Kerr nonlinearity in a bosonic quantum neural network , 2022, New Journal of Physics.

[8]  P. Lagoudakis,et al.  Solving the Max-3-Cut Problem with Coherent Networks , 2022, Physical Review Applied.

[9]  U. Peschel,et al.  Electro-optical Switching of a Topological Polariton Laser , 2022, ACS Photonics.

[10]  J. Szczytko,et al.  Neural Networks Based on Ultrafast Time-Delayed Effects in Exciton Polaritons , 2022, Physical Review Applied.

[11]  J. Szczytko,et al.  Leaky Integrate‐and‐Fire Mechanism in Exciton–Polariton Condensates for Photonic Spiking Neurons , 2021, Laser & Photonics Reviews.

[12]  A. Fieramosca,et al.  All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires , 2021, Science advances.

[13]  P. Lagoudakis,et al.  Single-photon nonlinearity at room temperature , 2021, Nature.

[14]  D. Ballarini,et al.  Energy-efficient neural network inference with microcavity exciton-polaritons , 2021, Physical Review Applied.

[15]  V. Ardizzone,et al.  Training a Neural Network with Exciton-Polariton Optical Nonlinearity , 2021, Physical Review Applied.

[16]  Kohei Nakajima,et al.  Quantum Neuromorphic Computing with Reservoir Computing Networks , 2021, Advanced Quantum Technologies.

[17]  Giulia Marcucci,et al.  Photonic extreme learning machine by free-space optical propagation , 2021, Photonics Research.

[18]  Q. Xiong,et al.  Optical switching of topological phase in a perovskite polariton lattice , 2021, Science Advances.

[19]  Adnan Mehonic,et al.  Brain-inspired computing needs a master plan , 2021, Nature.

[20]  T. Krisnanda,et al.  Superpolynomial quantum enhancement in polaritonic neuromorphic computing , 2021, Physical Review B.

[21]  J. Suffczyński,et al.  Neuromorphic Binarized Polariton Networks , 2021, Nano letters.

[22]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[23]  S. Schumacher,et al.  Switching off microcavity polariton condensate near the exceptional point , 2021, 2101.09478.

[24]  M. Papi,et al.  Living optical random neural network with three dimensional tumor spheroids for cancer morphodynamics , 2020, Communications Physics.

[25]  Andrzej Opala,et al.  Reconstructing Quantum States With Quantum Reservoir Networks , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[26]  Tomasz Szandała,et al.  Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks , 2020, Bio-inspired Neurocomputing.

[27]  Sanjib Ghosh,et al.  Universal Self-Correcting Computing with Disordered Exciton-Polariton Neural Networks , 2020 .

[28]  Pavlos G. Lagoudakis,et al.  All-optical cascadable universal logic gate with sub-picosecond operation , 2020, 2005.04802.

[29]  T. Paterek,et al.  Realising and compressing quantum circuits with quantum reservoir computing , 2020, Communications Physics.

[30]  L. Pfeiffer,et al.  Electrically controlled waveguide polariton laser , 2020, Optica.

[31]  T. Liew,et al.  Quantum computing with exciton-polariton condensates , 2020 .

[32]  Tomasz Paterek,et al.  Quantum Neuromorphic Platform for Quantum State Preparation. , 2019, Physical review letters.

[33]  D. Ballarini,et al.  Polaritonic neuromorphic computing outperforms linear classifiers , 2019, Nano letters.

[34]  P. Lagoudakis,et al.  Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities , 2019, Science.

[35]  Nikita Stroev,et al.  Discrete Polynomial Optimization with Coherent Networks of Condensates and Complex Coupling Switching , 2019, Physical review letters.

[36]  V. Kulakovskii,et al.  Ultrafast strain-induced switching of a bistable cavity-polariton system , 2019, Physical Review B.

[37]  C. Schneider,et al.  Realization of all-optical vortex switching in exciton-polariton condensates , 2019, Nature Communications.

[38]  A. Kavokin,et al.  Split-ring polariton condensates as macroscopic two-level quantum systems , 2019, 1907.00383.

[39]  Pavlos G. Lagoudakis,et al.  A room-temperature organic polariton transistor , 2019, Nature Photonics.

[40]  O. Kyriienko,et al.  Probabilistic solving of NP -hard problems with bistable nonlinear optical networks , 2019, Physical Review B.

[41]  Natalia G. Berloff,et al.  Polaritonic network as a paradigm for dynamics of coupled oscillators , 2019, Physical Review B.

[42]  A. Kavokin,et al.  Magnetic control of polariton spin transport , 2018, Communications Physics.

[43]  T. Liew,et al.  Artificial life in an exciton-polariton lattice , 2018, New Journal of Physics.

[44]  Andrzej Opala,et al.  Quantum reservoir processing , 2018, npj Quantum Information.

[45]  Q. Xiong,et al.  Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites , 2018, Science Advances.

[46]  Toshiyuki Yamane,et al.  Recent Advances in Physical Reservoir Computing: A Review , 2018, Neural Networks.

[47]  Andrzej Opala,et al.  Neuromorphic Computing in Ginzburg-Landau Polariton-Lattice Systems , 2018, Physical Review Applied.

[48]  M. Bandres,et al.  Exciton-polariton topological insulator , 2018, Nature.

[49]  Natalia G. Berloff,et al.  Networks of non-equilibrium condensates for global optimization , 2018, New Journal of Physics.

[50]  O. Kyriienko,et al.  All-to-All Intramodal Condensate Coupling by Multifrequency Excitation of Polaritons , 2018, ACS Photonics.

[51]  Mohammed Affan Zidan,et al.  Reservoir computing using dynamic memristors for temporal information processing , 2017, Nature Communications.

[52]  P. Lagoudakis,et al.  Exotic states of matter with polariton chains , 2017, 1710.02304.

[53]  P. Lagoudakis,et al.  A polariton graph simulator , 2017, 1709.05498.

[54]  Ch. K. P. Chan,et al.  Directional optical switching and transistor functionality using optical parametric oscillation in a spinor polariton fluid. , 2017, Optics express.

[55]  S. Brodbeck,et al.  Prototype of a bistable polariton field-effect transistor switch , 2017, Scientific Reports.

[56]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[57]  Daniele Sanvitto,et al.  The road towards polaritonic devices. , 2016, Nature materials.

[58]  J. Baumberg,et al.  A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. , 2016, Nature materials.

[59]  S. Maier,et al.  Room-temperature superfluidity in a polariton condensate , 2016, Nature Physics.

[60]  Pavlos G. Lagoudakis,et al.  Realizing the classical XY Hamiltonian in polariton simulators. , 2016, Nature materials.

[61]  K. West,et al.  Stable switching among high-order modes in polariton condensates , 2016, 1602.03024.

[62]  I. Shelykh,et al.  Switching waves in multilevel incoherently driven polariton condensates , 2015, 1507.07723.

[63]  Isabelle Sagnes,et al.  Realization of an all optical exciton-polariton router , 2015, 1507.04704.

[64]  Z. Hatzopoulos,et al.  Spontaneous spin bifurcations and ferromagnetic phase transitions in a spinor exciton-polariton condensate , 2015, 1507.02471.

[65]  M. Matuszewski,et al.  Adiabatic approximation and fluctuations in exciton-polariton condensates , 2015, 1505.06663.

[66]  O. Kyriienko,et al.  Exciton-polariton quantum gates based on continuous variables , 2015, 1505.04991.

[67]  F. Nori,et al.  Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard , 2015, Nature.

[68]  G. Lerario,et al.  High-speed flow of interacting organic polaritons , 2015, Light: Science & Applications.

[69]  T. Liew,et al.  Incoherent excitation and switching of spin states in exciton-polariton condensates , 2015, 1501.05355.

[70]  D. Solnyshkov,et al.  All optical controlled-NOT gate based on an exciton–polariton circuit , 2014, 1410.8364.

[71]  P. McMahon,et al.  Universal logic gates for quantum-dot electron-spin qubits using trapped quantum-well exciton polaritons , 2014, 1408.5160.

[72]  I. Shelykh,et al.  Information processing with topologically protected vortex memories in exciton-polariton condensates , 2014, 1403.5047.

[73]  Aephraim M. Steinberg,et al.  Ultrafast Stark-induced polaritonic switches. , 2014, Physical review letters.

[74]  I. Savenko,et al.  An exciton-polariton mediated all-optical router , 2013, 1307.6552.

[75]  B. Deveaud,et al.  Ultrafast tristable spin memory of a coherent polariton gas , 2013, Nature Communications.

[76]  P. S. Eldridge,et al.  Quantum reflections and shunting of polariton condensate wave trains: Implementation of a logic and gate , 2013, 1305.5678.

[77]  A. Lemaître,et al.  Realization of a double-barrier resonant tunneling diode for cavity polaritons. , 2013, Physical review letters.

[78]  J. Baumberg,et al.  Optical superfluid phase transitions and trapping of polariton condensates. , 2013, Physical review letters.

[79]  P. S. Eldridge,et al.  Energy relaxation of exciton-polariton condensates in quasi-one-dimensional microcavities , 2013, 1304.2811.

[80]  T. Espinosa-Ortega,et al.  Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities , 2013, 1302.1935.

[81]  D. Ballarini,et al.  Control and ultrafast dynamics of a two-fluid polariton switch. , 2012, Physical review letters.

[82]  P. S. Eldridge,et al.  Dynamics of a polariton condensate transistor switch , 2012, 1211.1147.

[83]  M. Steger,et al.  Single-wavelength, all-optical switching based on exciton-polaritons , 2012 .

[84]  T. Gao,et al.  Polariton Condensate Transistor Switch , 2012, ArXiv.

[85]  L Pesquera,et al.  Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. , 2012, Optics express.

[86]  D. Ballarini,et al.  All-optical polariton transistor , 2012, Nature Communications.

[87]  Benoit Deveaud-Plédran,et al.  Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid , 2011 .

[88]  V. G. Sala,et al.  All-optical control of the quantum flow of a polariton condensate , 2011, 1103.4885.

[89]  I. Shelykh,et al.  Optically and electrically controlled polariton spin transistor , 2010, 1007.3665.

[90]  Timothy Chi Hin Liew,et al.  Exciton-polariton integrated circuits , 2010 .

[91]  Romuald Houdré,et al.  Exciton–polariton spin switches , 2010 .

[92]  I. Shelykh,et al.  Theory of polarization-controlled polariton logic gates , 2010 .

[93]  Herbert Jaeger,et al.  Reservoir computing approaches to recurrent neural network training , 2009, Comput. Sci. Rev..

[94]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2008, 0812.2748.

[95]  I. Shelykh,et al.  Optical circuits based on polariton neurons in semiconductor microcavities. , 2008, Physical review letters.

[96]  Yu-qiang Ma,et al.  Phase effects on the exciton polariton amplifier , 2007 .

[97]  M. Romanelli,et al.  Interference of coherent polariton beams in microcavities: polarization-controlled optical gates. , 2007, Physical review letters.

[98]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[99]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[100]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[101]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[102]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[103]  N. Berloff,et al.  Renaissance of Analogue Optical Computing , 2023, ArXiv.

[104]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .

[105]  I. Bialynicki-Birula Nonlinear Structure of the Electromagnetic Vacuum , 1988 .