Synchronization of master–slave Lagrangian systems via intermittent control

In this paper, synchronization of master–slave Lagrangian systems via intermittent control was developed. Based on the intermittent control, some algebraic criteria are derived to make the slave Lagrangian system synchronize to a master one. Different from the most existing results on control problems of Lagrangian systems, the controller proposed here is not continuous-time control input and is not relied on the knowledge of system models. As a direct application, the obtained results are applied to a typical two-link revolute jointed robot (robot manipulator). Subsequently, numerical simulations demonstrate the effectiveness of the criteria and the robustness of the control strategy.

[1]  Liang Xu,et al.  Adaptive backstepping trajectory tracking control of robot manipulator , 2012, J. Frankl. Inst..

[2]  Junjian Huang,et al.  Lag Synchronization in Coupled Chaotic Systems Via Intermittent Control , 2011 .

[3]  Liu Hsu,et al.  Global tracking for robot manipulators using a simple causal PD controller plus feedforward , 2009, Robotica.

[4]  Indra Narayan Kar,et al.  Adaptive output feedback tracking control of robot manipulators using position measurements only , 2008, Expert Syst. Appl..

[5]  Mayank Srivastava,et al.  Hybrid phase synchronization between identical and nonidentical three-dimensional chaotic systems using the active control method , 2013 .

[6]  Pengcheng Wei,et al.  Weak synchronization of chaotic neural networks with parameter mismatch via periodically intermittent control , 2011 .

[7]  Soon-Jo Chung,et al.  Nonlinear control and synchronization of multiple Lagrangian systems with application to tethered formation flight spacecraft , 2007 .

[8]  Wansheng Tang,et al.  Control and synchronization for a class of new chaotic systems via linear feedback , 2009 .

[9]  Min Lin,et al.  Kinematics and Dynamics of a Tensegrity-Based Water Wave Energy Harvester , 2016, J. Robotics.

[10]  Rajendra Prasad,et al.  Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator , 2016, J. Intell. Manuf..

[11]  Rafael Kelly,et al.  PD control with feedforward compensation for robot manipulators: analysis and experimentation , 2001, Robotica.

[12]  Cheng Hu,et al.  Generalized intermittent control and its adaptive strategy on stabilization and synchronization of chaotic systems , 2016 .

[13]  Rohitash Chandra,et al.  The forward kinematics of the 6-6 parallel manipulator using an evolutionary algorithm based on generalized generation gap with parent-centric crossover , 2014, Robotica.

[14]  S. Qian,et al.  Adaptive stochastic cellular automata: applications , 1991 .

[15]  Rafael Kelly,et al.  Global convergence of the adaptive PD controller with computed feedforward for robot manipulators , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[16]  G. Kaasa,et al.  Global Output Feedback Tracking Control of Euler-Lagrange Systems , 2011 .

[17]  Chuandong Li,et al.  Chaotic synchronization by the intermittent feedback method , 2010, J. Comput. Appl. Math..

[18]  Jianfeng Huang,et al.  Nonlinear pd controllers with gravity compensation for robot manipulators , 2014 .

[19]  M. Zochowski Intermittent dynamical control , 2000 .

[20]  Chuandong Li,et al.  Lag quasisynchronization of coupled delayed systems with parameter mismatch by periodically intermittent control , 2013 .

[21]  Z. Zuo,et al.  A new method for exponential synchronization of chaotic delayed systems via intermittent control , 2010 .

[22]  R. Kelly,et al.  PD control with computed feedforward of robot manipulators: a design procedure , 1994, IEEE Trans. Robotics Autom..

[23]  Omar Naifar,et al.  Robust software sensor with online estimation of stator resistance applied to WECS using IM , 2015 .

[24]  Shuzhi Sam Ge,et al.  Force tracking control for motion synchronization in human-robot collaboration , 2014, Robotica.

[25]  Warren E. Dixon,et al.  Global robust output feedback tracking control of robot manipulators , 2004, Robotica.