Biconic aggregation functions

We introduce a new method to construct aggregation functions. These aggregation functions are called biconic aggregation functions with a given diagonal (resp. opposite diagonal) section and their construction is based on linear interpolation on segments connecting the diagonal (resp. opposite diagonal) of the unit square to the points (0,1) and (1,0) (resp. (0,0) and (1,1)). Subclasses of biconic aggregation functions such as biconic semi-copulas, biconic quasi-copulas and biconic copulas are studied in detail.

[1]  Radko Mesiar,et al.  Piecewise linear aggregation functions based on triangulation , 2011, Inf. Sci..

[2]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[3]  G. Choquet Theory of capacities , 1954 .

[4]  Roger B. Nelsen,et al.  The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas , 2005 .

[5]  Josef Štěpán,et al.  Distributions with given marginals and moment problems , 1997 .

[6]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[7]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[8]  Radko Mesiar,et al.  Aggregation functions: Means , 2011, Inf. Sci..

[9]  D. Denneberg Non-additive measure and integral , 1994 .

[10]  Radko Mesiar,et al.  Copulas with Given Diagonal Sections: Novel Constructions and Applications , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[11]  Bernard De Baets,et al.  Transitivity Bounds in Additive Fuzzy Preference Structures , 2007, IEEE Transactions on Fuzzy Systems.

[12]  R. Mesiar,et al.  On a family of copulas constructed from the diagonal section , 2006, Soft Comput..

[13]  Radko Mesiar,et al.  Semilinear copulas , 2008, Fuzzy Sets Syst..

[14]  Bernard De Baets,et al.  Opposite Diagonal Sections of Quasi-copulas and copulas , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[15]  Gleb Beliakov,et al.  Pointwise Construction of Lipschitz Aggregation Operators with Specific Properties , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[16]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[17]  Radko Mesiar,et al.  Asymmetric semilinear copulas , 2007, Kybernetika.

[18]  H. Joe Multivariate models and dependence concepts , 1998 .

[19]  Fabrizio Durante,et al.  Absolutely Continuous Copulas with Given Diagonal Sections , 2008 .

[20]  Manuel Úbeda-Flores,et al.  Constructing Copulas with Given Diagonal and Opposite Diagonal Sections , 2011 .

[21]  Anna Kolesárová,et al.  1-Lipschitz aggregation operators and quasi-copulas , 2003, Kybernetika.

[22]  R. Nelsen An Introduction to Copulas , 1998 .

[23]  Fabrizio Durante,et al.  Semicopulas: characterizations and applicability , 2006, Kybernetika.

[24]  Bernard De Baets,et al.  Orbital Semilinear Copulas , 2009, Kybernetika.

[25]  Didier Dubois,et al.  On the use of aggregation operations in information fusion processes , 2004, Fuzzy Sets Syst..

[26]  Y. Tong,et al.  Convex Functions, Partial Orderings, and Statistical Applications , 1992 .

[27]  Radko Mesiar,et al.  Conic aggregation functions , 2011, Fuzzy Sets Syst..

[28]  Fabrizio Durante,et al.  On representations of 2-increasing binary aggregation functions , 2008, Inf. Sci..

[29]  R. Mesiar,et al.  Aggregation Functions (Encyclopedia of Mathematics and its Applications) , 2009 .

[30]  Bernard De Baets,et al.  On the transitivity of a parametric family of cardinality-based similarity measures , 2009, Int. J. Approx. Reason..

[31]  Constantin P. Niculescu,et al.  Convex Functions and Their Applications: A Contemporary Approach , 2005 .

[32]  José Juan Quesada-Molina,et al.  On the construction of copulas and quasi-copulas with given diagonal sections , 2008 .

[33]  Anna Kolesárová,et al.  Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators , 2005, Kybernetika.

[34]  Bernard De Baets,et al.  Bell-type inequalities for quasi-copulas , 2004, Fuzzy Sets Syst..

[35]  Radko Mesiar,et al.  Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes , 2011, Inf. Sci..

[36]  Bernard De Baets,et al.  On an idempotent transformation of aggregation functions and its application on absolutely continuous Archimedean copulas , 2009, Fuzzy Sets Syst..

[37]  Christian Genest,et al.  A Characterization of Quasi-copulas , 1999 .