Noninvasive exploration of cardiac autonomic neuropathy. Four reliable methods for diabetes?

OBJECTIVE The purpose of this work was to assess relevant information that could be provided by various mathematical analyses of spontaneous blood pressure (BP) and heart rate (HR) variabilities in diabetic cardiovascular neuropathy. RESEARCH DESIGN AND METHODS There were 10 healthy volunteers and 11 diabetic subjects included in the study. Diabetic patients were selected for nonsymptomatic orthostatic hypotension in an assessment of their cardiovascular autonomic impairment. Cardiac autonomic function was scored according to Ewing's methodology adapted to the use of a Finapres device. The spontaneous beat-to-beat BP and HR variabilities were then analyzed on a 1-h recording in supine subjects. The global variabilities were assessed by standard deviation, fractal dimension, and spectral power. The cardiac baroreflex function was estimated by cross-spectral sequences and Z analyses. RESULTS In diabetic patients, Ewing's scores ranged from 1 to 4.5, confirming cardiovascular autonomic dysfunction. In these diabetic patients, global indices of variabilities were consistently lower than in healthy subjects. Furthermore, some of them (standard deviation and fractal dimension of HR, spectral power of systolic blood pressure and HR) were significantly correlated with the Ewing's scores. The Z methods and the spectral analysis found that the cardiac baroreflex was less effective in diabetic subjects. However, the baroreflex sensitivity could not be reliably assessed in all the patients. The sequence method pointed out a decreased number of baroreflex sequences in diabetic subjects that was correlated to the Ewing's score. CONCLUSIONS Indices of HR spontaneous beat-to-beat variability are consistently related to the degree of cardiac autonomic dysfunction, according to Ewing's methodology. The Z method and spectral analysis confirmed that the cardiac baroreflex was impaired in diabetic patients. These methods might be clinically relevant for use in detecting incipient neuropathy in diabetic patients.