Unsupervised Energy-based Out-of-distribution Detection using Stiefel-Restricted Kernel Machine

[1]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[2]  Disentangled Representation Learning and Generation with Manifold Optimization , 2020, ArXiv.

[3]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[4]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[5]  R. Srikant,et al.  Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks , 2017, ICLR.

[6]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[7]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[8]  Mohammad Norouzi,et al.  Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One , 2019, ICLR.

[9]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[10]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[11]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[12]  Diederik P. Kingma,et al.  Variational Recurrent Auto-Encoders , 2014, ICLR.

[13]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[14]  David A. Clifton,et al.  A review of novelty detection , 2014, Signal Process..

[15]  Johan A. K. Suykens,et al.  Deep Restricted Kernel Machines Using Conjugate Feature Duality , 2017, Neural Computation.

[16]  M. Pastore,et al.  Measuring Distribution Similarities Between Samples: A Distribution-Free Overlapping Index , 2019, Front. Psychol..

[17]  Jun Li,et al.  Efficient Riemannian Optimization on the Stiefel Manifold via the Cayley Transform , 2020, ICLR.

[18]  Václav Smídl,et al.  Are generative deep models for novelty detection truly better? , 2018, ArXiv.

[19]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[20]  Fu Jie Huang,et al.  A Tutorial on Energy-Based Learning , 2006 .

[21]  Mia Hubert,et al.  Robust statistics for outlier detection , 2011, WIREs Data Mining Knowl. Discov..

[22]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[23]  Yee Whye Teh,et al.  Do Deep Generative Models Know What They Don't Know? , 2018, ICLR.

[24]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[25]  Weitang Liu,et al.  Energy-based Out-of-distribution Detection , 2020, NeurIPS.

[26]  J. Suykens,et al.  Robust Generative Restricted Kernel Machines using Weighted Conjugate Feature Duality , 2020, LOD.

[27]  Henry F. Inman,et al.  The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities , 1989 .