Positive definite matrices and the S-divergence

Positive definite matrices abound in a dazzling variety of applications. This ubiquity can be in part attributed to their rich geometric structure: positive definite matrices form a self-dual convex cone whose strict interior is a Riemannian manifold. The manifold view is endowed with a "natural" distance function while the conic view is not. Nevertheless, drawing motivation from the conic view, we introduce the S-Divergence as a "natural" distance-like function on the open cone of positive definite matrices. We motivate the S-divergence via a sequence of results that connect it to the Riemannian distance. In particular, we show that (a) this divergence is the square of a distance; and (b) that it has several geometric properties similar to those of the Riemannian distance, though without being computationally as demanding. The S-divergence is even more intriguing: although nonconvex, we can still compute matrix means and medians using it to global optimality. We complement our results with some numerical experiments illustrating our theorems and our optimization algorithm for computing matrix medians.

[1]  A. Bhattacharyya On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .

[2]  M. Edelstein On Fixed and Periodic Points Under Contractive Mappings , 1962 .

[3]  M. Fiedler Bounds for the determinant of the sum of hermitian matrices , 1971 .

[4]  S. G. Gindikin,et al.  Invariant generalized functions in homogeneous domains , 1975 .

[5]  R. Subramanian,et al.  Inequalities between means of positive operators , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  T. Andô Concavity of certain maps on positive definite matrices and applications to Hadamard products , 1979 .

[7]  T. Andô,et al.  Means of positive linear operators , 1980 .

[8]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[9]  C. Berg,et al.  Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions , 1984 .

[10]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[11]  A. Terras Harmonic Analysis on Symmetric Spaces and Applications I , 1985 .

[12]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[13]  S. J. Patterson,et al.  HARMONIC ANALYSIS ON SYMMETRIC SPACES AND APPLICATIONS , 1990 .

[14]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[15]  P. Bougerol Kalman filtering with random coefficients and contractions , 1993 .

[16]  Sigurdur Helgason,et al.  Geometric Analysis on Symmetric Spaces , 1994 .

[17]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[18]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[19]  R. Bhatia Matrix Analysis , 1996 .

[20]  Josip Pečarić,et al.  A MIXED ARITHMETIC-MEAN-HARMONIC-MEAN MATRIX INEQUALITY , 1996 .

[21]  Heinz H. Bauschke,et al.  Legendre functions and the method of random Bregman projections , 1997 .

[22]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[23]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[24]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[25]  Michael J. Todd,et al.  On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods , 2002, Found. Comput. Math..

[26]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[27]  Kenji Fukumizu,et al.  Semigroup Kernels on Measures , 2005, J. Mach. Learn. Res..

[28]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[29]  Khalid Koufany,et al.  Application of Hilbert’s Projective Metric on Symmetric Cones , 2006 .

[30]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[31]  Y. Lim,et al.  A general framework for extending means to higher orders , 2006, math/0612293.

[32]  R. Bhatia,et al.  Riemannian geometry and matrix geometric means , 2006 .

[33]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[34]  R. Bhatia Positive Definite Matrices , 2007 .

[35]  Inderjit S. Dhillon,et al.  Matrix Nearness Problems with Bregman Divergences , 2007, SIAM J. Matrix Anal. Appl..

[36]  F. Hiai,et al.  Riemannian metrics on positive definite matrices related to means , 2008, 0809.4974.

[37]  M. Rao,et al.  Metrics defined by Bregman Divergences , 2008 .

[38]  Y. Lim,et al.  Invariant metrics, contractions and nonlinear matrix equations , 2008 .

[39]  Frank Nielsen,et al.  Sided and Symmetrized Bregman Centroids , 2009, IEEE Transactions on Information Theory.

[40]  Inderjit S. Dhillon,et al.  Low-Rank Kernel Learning with Bregman Matrix Divergences , 2009, J. Mach. Learn. Res..

[41]  Anoop Cherian,et al.  Efficient similarity search for covariance matrices via the Jensen-Bregman LogDet Divergence , 2011, 2011 International Conference on Computer Vision.

[42]  S. Sra Positive definite matrices and the Symmetric Stein Divergence , 2011 .

[43]  Maher Moakher,et al.  Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function , 2012 .

[44]  Bas Lemmens,et al.  Nonlinear Perron-Frobenius Theory , 2012 .

[45]  Suvrit Sra,et al.  A new metric on the manifold of kernel matrices with application to matrix geometric means , 2012, NIPS.

[46]  Ben Jeuris,et al.  A survey and comparison of contemporary algorithms for computing the matrix geometric mean , 2012 .

[47]  Brian C. Lovell,et al.  Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach , 2012, ECCV.

[48]  Frank Nielsen,et al.  Matrix Information Geometry , 2012 .

[49]  Anoop Cherian,et al.  Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Dario Bini,et al.  Computing the Karcher mean of symmetric positive definite matrices , 2013 .