Bent Functions

[1]  C. Xing Zeta-functions of curves of genus 2 over finite fields , 2007 .

[2]  Guang Gong,et al.  Transform domain analysis of DES , 1999, IEEE Trans. Inf. Theory.

[3]  R. Lercier,et al.  A quasi quadratic time algorithm for hyperelliptic curve point counting , 2006 .

[4]  Richard P. Brent,et al.  Faster Multiplication in GF(2)[x] , 2008, ANTS.

[5]  K. Kedlaya Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology , 2001, math/0105031.

[6]  Frederik Vercauteren,et al.  Point Counting on Elliptic and Hyperelliptic Curves , 2005, Handbook of Elliptic and Hyperelliptic Curve Cryptography.

[7]  Matthew G. Parker,et al.  Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.

[8]  René Schoof,et al.  Nonsingular plane cubic curves over finite fields , 1987, J. Comb. Theory A.

[9]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[10]  Petr Lisonek,et al.  On the Connection between Kloosterman Sums and Elliptic Curves , 2008, SETA.

[11]  Guang Gong,et al.  Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Transactions on Information Theory.

[12]  Sihem Mesnager,et al.  A note on hyper-bent functions via Dillon-like exponents , 2012, IACR Cryptol. ePrint Arch..

[13]  Kai-Uwe Schmidt,et al.  Quaternary Constant-Amplitude Codes for Multicode CDMA , 2006, IEEE Transactions on Information Theory.

[14]  Jennifer Seberry,et al.  Homogeneous bent functions , 2000, Discret. Appl. Math..

[15]  Gregor Leander,et al.  Monomial bent functions , 2006, IEEE Transactions on Information Theory.

[16]  Виктор Игоревич Солодовников,et al.  Бент-функции из конечной абелевой группы в конечную абелеву группу@@@Bent functions from a finite abelian group into a finite abelian group , 2002 .

[17]  Sihem Mesnager A New Family of Hyper-Bent Boolean Functions in Polynomial Form , 2009, IMACC.

[18]  Rajesh P. Singh,et al.  Public Key Cryptography Using Permutation P-polynomials over Finite Fields , 2009, IACR Cryptol. ePrint Arch..

[19]  Matthew G. Parker,et al.  From graph states to two-graph states , 2008, Des. Codes Cryptogr..

[20]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[21]  Jianqin Zhou,et al.  Generalized Partially Bent Functions , 2007, Future Generation Communication and Networking (FGCN 2007).

[22]  Neal Koblitz,et al.  Constructing Elliptic Curve Cryptosystems in Characteristic 2 , 1990, CRYPTO.

[23]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[24]  F. Vercauteren,et al.  Computing Zeta Functions of Curves over Finite Fields , 2008 .

[25]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[26]  Kai-Uwe Schmidt,et al.  ${\BBZ}_4$ -Valued Quadratic Forms and Quaternary Sequence Families , 2009, IEEE Transactions on Information Theory.

[27]  Yixian Yang,et al.  A new class of hyper-bent Boolean functions in binomial forms , 2011, ArXiv.

[28]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[29]  Sihem Mesnager,et al.  A new class of bent and hyper-bent Boolean functions in polynomial forms , 2011, Des. Codes Cryptogr..

[30]  G. Lachaud,et al.  The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.

[31]  Cunsheng Ding,et al.  The weight distribution of a class of linear codes from perfect nonlinear functions , 2006, IEEE Transactions on Information Theory.

[32]  W. Waterhouse,et al.  Abelian varieties over finite fields , 1969 .

[33]  Sihem Mesnager,et al.  Dickson Polynomials, Hyperelliptic Curves and Hyper-bent Functions , 2012, SETA.

[34]  Guang Gong,et al.  Constructions of quadratic bent functions in polynomial forms , 2006, IEEE Transactions on Information Theory.

[35]  Chunming Tang,et al.  Constructing Hyper-Bent Functions from Boolean Functions with the Walsh Spectrum Taking the Same Value Twice , 2014, SETA.

[36]  Stefan Behnel,et al.  Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.

[37]  Sihem Mesnager,et al.  Bent and Hyper-Bent Functions in Polynomial Form and Their Link With Some Exponential Sums and Dickson Polynomials , 2011, IEEE Transactions on Information Theory.

[38]  Bart Preneel,et al.  A new inequality in discrete Fourier theory , 2003, IEEE Trans. Inf. Theory.

[39]  Patrick Solé,et al.  Connections between Quaternary and Binary Bent Functions , 2009, IACR Cryptol. ePrint Arch..

[40]  F. Vercauteren Advances in Elliptic Curve Cryptography: Advances in Point Counting , 2005 .

[41]  Tor Helleseth,et al.  Divisibility properties of Kloosterman sums over finite fields of characteristic two , 2008, 2008 IEEE International Symposium on Information Theory.

[42]  Yixian Yang,et al.  A generalization of the class of hyper-bent Boolean functions in binomial forms , 2011, IACR Cryptol. ePrint Arch..

[43]  Matthew G. Parker,et al.  Negabent Functions in the Maiorana-McFarland Class , 2008, SETA.

[44]  Claude Carlet,et al.  Hyper-bent functions and cyclic codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[45]  Petr Lison An Efficient Characterization of a Family of Hyperbent Functions , 2011 .