Bent Functions
暂无分享,去创建一个
[1] C. Xing. Zeta-functions of curves of genus 2 over finite fields , 2007 .
[2] Guang Gong,et al. Transform domain analysis of DES , 1999, IEEE Trans. Inf. Theory.
[3] R. Lercier,et al. A quasi quadratic time algorithm for hyperelliptic curve point counting , 2006 .
[4] Richard P. Brent,et al. Faster Multiplication in GF(2)[x] , 2008, ANTS.
[5] K. Kedlaya. Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology , 2001, math/0105031.
[6] Frederik Vercauteren,et al. Point Counting on Elliptic and Hyperelliptic Curves , 2005, Handbook of Elliptic and Hyperelliptic Curve Cryptography.
[7] Matthew G. Parker,et al. Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.
[8] René Schoof,et al. Nonsingular plane cubic curves over finite fields , 1987, J. Comb. Theory A.
[9] O. S. Rothaus,et al. On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.
[10] Petr Lisonek,et al. On the Connection between Kloosterman Sums and Elliptic Curves , 2008, SETA.
[11] Guang Gong,et al. Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Transactions on Information Theory.
[12] Sihem Mesnager,et al. A note on hyper-bent functions via Dillon-like exponents , 2012, IACR Cryptol. ePrint Arch..
[13] Kai-Uwe Schmidt,et al. Quaternary Constant-Amplitude Codes for Multicode CDMA , 2006, IEEE Transactions on Information Theory.
[14] Jennifer Seberry,et al. Homogeneous bent functions , 2000, Discret. Appl. Math..
[15] Gregor Leander,et al. Monomial bent functions , 2006, IEEE Transactions on Information Theory.
[16] Виктор Игоревич Солодовников,et al. Бент-функции из конечной абелевой группы в конечную абелеву группу@@@Bent functions from a finite abelian group into a finite abelian group , 2002 .
[17] Sihem Mesnager. A New Family of Hyper-Bent Boolean Functions in Polynomial Form , 2009, IMACC.
[18] Rajesh P. Singh,et al. Public Key Cryptography Using Permutation P-polynomials over Finite Fields , 2009, IACR Cryptol. ePrint Arch..
[19] Matthew G. Parker,et al. From graph states to two-graph states , 2008, Des. Codes Cryptogr..
[20] Gérard D. Cohen,et al. Covering Codes , 2005, North-Holland mathematical library.
[21] Jianqin Zhou,et al. Generalized Partially Bent Functions , 2007, Future Generation Communication and Networking (FGCN 2007).
[22] Neal Koblitz,et al. Constructing Elliptic Curve Cryptosystems in Characteristic 2 , 1990, CRYPTO.
[23] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[24] F. Vercauteren,et al. Computing Zeta Functions of Curves over Finite Fields , 2008 .
[25] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[26] Kai-Uwe Schmidt,et al. ${\BBZ}_4$ -Valued Quadratic Forms and Quaternary Sequence Families , 2009, IEEE Transactions on Information Theory.
[27] Yixian Yang,et al. A new class of hyper-bent Boolean functions in binomial forms , 2011, ArXiv.
[28] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[29] Sihem Mesnager,et al. A new class of bent and hyper-bent Boolean functions in polynomial forms , 2011, Des. Codes Cryptogr..
[30] G. Lachaud,et al. The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.
[31] Cunsheng Ding,et al. The weight distribution of a class of linear codes from perfect nonlinear functions , 2006, IEEE Transactions on Information Theory.
[32] W. Waterhouse,et al. Abelian varieties over finite fields , 1969 .
[33] Sihem Mesnager,et al. Dickson Polynomials, Hyperelliptic Curves and Hyper-bent Functions , 2012, SETA.
[34] Guang Gong,et al. Constructions of quadratic bent functions in polynomial forms , 2006, IEEE Transactions on Information Theory.
[35] Chunming Tang,et al. Constructing Hyper-Bent Functions from Boolean Functions with the Walsh Spectrum Taking the Same Value Twice , 2014, SETA.
[36] Stefan Behnel,et al. Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.
[37] Sihem Mesnager,et al. Bent and Hyper-Bent Functions in Polynomial Form and Their Link With Some Exponential Sums and Dickson Polynomials , 2011, IEEE Transactions on Information Theory.
[38] Bart Preneel,et al. A new inequality in discrete Fourier theory , 2003, IEEE Trans. Inf. Theory.
[39] Patrick Solé,et al. Connections between Quaternary and Binary Bent Functions , 2009, IACR Cryptol. ePrint Arch..
[40] F. Vercauteren. Advances in Elliptic Curve Cryptography: Advances in Point Counting , 2005 .
[41] Tor Helleseth,et al. Divisibility properties of Kloosterman sums over finite fields of characteristic two , 2008, 2008 IEEE International Symposium on Information Theory.
[42] Yixian Yang,et al. A generalization of the class of hyper-bent Boolean functions in binomial forms , 2011, IACR Cryptol. ePrint Arch..
[43] Matthew G. Parker,et al. Negabent Functions in the Maiorana-McFarland Class , 2008, SETA.
[44] Claude Carlet,et al. Hyper-bent functions and cyclic codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[45] Petr Lison. An Efficient Characterization of a Family of Hyperbent Functions , 2011 .