Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA

[1]  M. Suckow,et al.  Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one. , 2015, Journal of the American Chemical Society.

[2]  Christian Munck,et al.  Prediction of resistance development against drug combinations by collateral responses to component drugs , 2014, Science Translational Medicine.

[3]  S. W. Long,et al.  PBP2a Mutations Causing High-Level Ceftaroline Resistance in Clinical Methicillin-Resistant Staphylococcus aureus Isolates , 2014, Antimicrobial Agents and Chemotherapy.

[4]  J. Hermoso,et al.  Disruption of Allosteric Response as an Unprecedented Mechanism of Resistance to Antibiotics , 2014, Journal of the American Chemical Society.

[5]  S. Mobashery,et al.  Regulation of the Expression of the β-Lactam Antibiotic-Resistance Determinants in Methicillin-Resistant Staphylococcus aureus (MRSA) , 2014, Biochemistry.

[6]  Ellsworth M. Campbell,et al.  A Population Model Evaluating the Consequences of the Evolution of Double-Resistance and Tradeoffs on the Benefits of Two-Drug Antibiotic Treatments , 2014, PloS one.

[7]  J. Hermoso,et al.  How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function , 2013, Proceedings of the National Academy of Sciences.

[8]  M. Sommer,et al.  Use of Collateral Sensitivity Networks to Design Drug Cycling Protocols That Avoid Resistance Development , 2013, Science Translational Medicine.

[9]  P. Arede,et al.  Redefining the Role of the β-Lactamase Locus in Methicillin-Resistant Staphylococcus aureus: β-Lactamase Regulators Disrupt the MecI-Mediated Strong Repression on mecA and Optimize the Phenotypic Expression of Resistance in Strains with Constitutive mecA Expression , 2013, Antimicrobial Agents and Chemotherapy.

[10]  B. Levin,et al.  The Pharmaco –, Population and Evolutionary Dynamics of Multi-drug Therapy: Experiments with S. aureus and E. coli and Computer Simulations , 2013, PLoS pathogens.

[11]  Stefan Niemann,et al.  Whole-genome sequencing of rifampicin-resistant M. tuberculosis strains identifies compensatory mutations in RNA polymerase , 2011, Nature Genetics.

[12]  Terry Roemer,et al.  Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. , 2011, Chemistry & biology.

[13]  D. Livermore,et al.  Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. , 2011, The Lancet. Infectious diseases.

[14]  D. Paterson,et al.  Emergence of daptomycin resistance following vancomycin-unresponsive Staphylococcus aureus bacteraemia in a daptomycin-naïve patient—a review of the literature , 2011, European Journal of Clinical Microbiology & Infectious Diseases.

[15]  K. Brodolin,et al.  Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns. , 2010, International journal of antimicrobial agents.

[16]  B. Murray,et al.  Antibiotic-resistant bugs in the 21st century--a clinical super-challenge. , 2009, The New England journal of medicine.

[17]  Henry F. Chambers,et al.  Waves of resistance: Staphylococcus aureus in the antibiotic era , 2009, Nature Reviews Microbiology.

[18]  Christopher T. Walsh,et al.  Antibiotics for Emerging Pathogens , 2009, Science.

[19]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[20]  N. Masuda,et al.  Affinity of Tomopenem (CS-023) for Penicillin-Binding Proteins in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[21]  D. Hartl,et al.  Accelerated evolution of resistance in multidrug environments , 2008, Proceedings of the National Academy of Sciences.

[22]  S. Mobashery,et al.  Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: potent inhibition of PBP 2a by two anti-MRSA beta-lactam antibiotics. , 2008, Journal of the American Chemical Society.

[23]  L. Saiman Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: 'the motion for'. , 2007, Paediatric respiratory reviews.

[24]  Rui Wang,et al.  Antibacterial Activity of Allicin Alone and in Combination with β-Lactams against Staphylococcus spp. and Pseudomonas aeruginosa , 2007, The Journal of Antibiotics.

[25]  G. Archer,et al.  Identification and Phenotypic Characterization of a β-Lactam-Dependent, Methicillin-Resistant Staphylococcus aureus Strain , 2007, Antimicrobial Agents and Chemotherapy.

[26]  D. Nicolau,et al.  Bactericidal Activities of Meropenem and Ertapenem against Extended-Spectrum-β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in a Neutropenic Mouse Thigh Model , 2007, Antimicrobial Agents and Chemotherapy.

[27]  L. Rice,et al.  Antimicrobial resistance in gram-positive bacteria. , 2006, The American journal of medicine.

[28]  Y. Bhusal,et al.  Determination of in vitro synergy when three antimicrobial agents are combined against Mycobacterium tuberculosis. , 2005, International journal of antimicrobial agents.

[29]  S. Mobashery,et al.  β-Lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome , 2005, Cellular and Molecular Life Sciences.

[30]  S. Mobashery,et al.  Activation for catalysis of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall. , 2005, Journal of the American Chemical Society.

[31]  S. Mobashery,et al.  The Basis for Resistance to β-Lactam Antibiotics by Penicillin-binding Protein 2a of Methicillin-resistant Staphylococcus aureus* , 2004, Journal of Biological Chemistry.

[32]  M. Blaser,et al.  Long-Term Persistence of Resistant Enterococcus Species after Antibiotics To Eradicate Helicobacter pylori , 2003, Annals of Internal Medicine.

[33]  F. Lowy Antimicrobial resistance: the example of Staphylococcus aureus. , 2003, The Journal of clinical investigation.

[34]  M. Kanehisa,et al.  Whole genome sequencing of meticillin-resistant Staphylococcus aureus , 2001, The Lancet.

[35]  W. Craig,et al.  The pharmacology of meropenem, a new carbapenem antibiotic. , 1997, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[36]  D. Wilson,et al.  In vivo activities of U-100592 and U-100766, novel oxazolidinone antimicrobial agents, against experimental bacterial infections , 1996, Antimicrobial agents and chemotherapy.

[37]  J. Davies,et al.  Origins and Evolution of Antibiotic Resistance , 1996, Microbiology and Molecular Biology Reviews.

[38]  C. Hackbarth,et al.  blaI and blaR1 regulate beta-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus , 1993, Antimicrobial Agents and Chemotherapy.

[39]  M. Kinzig,et al.  Pharmacokinetics and tissue penetration of tazobactam and piperacillin in patients undergoing colorectal surgery , 1992, Antimicrobial Agents and Chemotherapy.

[40]  Berenbaum Mc What is synergy? , 1989, Pharmacological reviews.

[41]  P. Somani,et al.  Pharmacokinetics of imipenem-cilastatin in patients with renal insufficiency undergoing continuous ambulatory peritoneal dialysis , 1988, Antimicrobial Agents and Chemotherapy.

[42]  F. Malouin,et al.  Modification of penicillin-binding proteins as mechanisms of beta-lactam resistance , 1986, Antimicrobial Agents and Chemotherapy.

[43]  M. Marks,et al.  In vitro antimicrobial activity of aztreonam alone and in combination against bacterial isolates from pediatric patients , 1984, Antimicrobial Agents and Chemotherapy.

[44]  M. Berenbaum,et al.  A method for testing for synergy with any number of agents. , 1978, The Journal of infectious diseases.

[45]  S. Sonstein,et al.  Loss of the Penicillinase Plasmid After Treatment of Staphylococcus aureus with Sodium Dodecyl Sulfate , 1972, Journal of bacteriology.

[46]  R. Humphries,et al.  The emerging problem of linezolid-resistant Staphylococcus. , 2013, The Journal of antimicrobial chemotherapy.

[47]  B. Kégl,et al.  Bacterial evolution of antibiotic hypersensitivity , 2013, Molecular systems biology.

[48]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[49]  J. Lehár,et al.  Multi-target therapeutics: when the whole is greater than the sum of the parts. , 2007, Drug discovery today.

[50]  Mary Jane Ferraro,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard , 2000 .

[51]  K. Bush,et al.  Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by beta-lactamases. , 1995, The Journal of antimicrobial chemotherapy.

[52]  J. Strominger,et al.  Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. , 1983, Annual review of biochemistry.