Functional CLT for sample covariance matrices

Using Bernstein polynomial approximations, we prove the central limit theorem for linear spectral statistics of sample covariance matrices, indexed by a set of functions with continuous fourth order derivatives on an open interval including $[(1-\sqrt{y})^2,(1+\sqrt{y})^2]$, the support of the Mar\u{c}enko--Pastur law. We also derive the explicit expressions for asymptotic mean and covariance functions.

[1]  Z. Bai,et al.  Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices , 1993 .

[2]  O. Zeitouni,et al.  A CLT for a band matrix model , 2004, math/0412040.

[3]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[4]  Jian-Feng Yao,et al.  Convergence Rates of Spectral Distributions of Large Sample Covariance Matrices , 2003, SIAM J. Matrix Anal. Appl..

[5]  Zhidong Bai,et al.  A note on the convergence rate of the spectral distributions of large random matrices , 1997 .

[6]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[7]  L. Pastur,et al.  CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES , 2008, 0809.4698.

[8]  J. W. Silverstein,et al.  COVARIANCE MATRICES , 2022 .

[9]  J. W. Silverstein Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices , 1995 .

[10]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[11]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[12]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[13]  Zhidong Bai,et al.  CONVERGENCE RATE OF EXPECTED SPECTRAL DISTRIBUTIONS OF LARGE RANDOM MATRICES PART II: SAMPLE COVARIANCE MATRICES , 2008 .

[14]  Z. Bai,et al.  Convergence rate of expected spectral distributions of large random matrices , 2008 .

[15]  Dag Jonsson Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .

[16]  L. Imhof Matrix Algebra and Its Applications to Statistics and Econometrics , 1998 .

[17]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[18]  Y. Yin Limiting spectral distribution for a class of random matrices , 1986 .

[19]  K. Wachter The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .

[20]  J. W. Silverstein,et al.  Spectral Analysis of Networks with Random Topologies , 1977 .