Testing hypotheses via a mixture estimation model

We consider a novel paradigm for Bayesian testing of hypotheses and Bayesian model comparison. Our alternative to the traditional construction of posterior probabilities that a given hypothesis is true or that the data originates from a specific model is to consider the models under comparison as components of a mixture model. We therefore replace the original testing problem with an estimation one that focus on the probability weight of a given model within a mixture model. We analyse the sensitivity on the resulting posterior distribution on the weights of various prior modelling on the weights. We stress that a major appeal in using this novel perspective is that generic improper priors are acceptable, while not putting convergence in jeopardy. Among other features, this allows for a resolution of the Lindley-Jeffreys paradox. When using a reference Beta B(a,a) prior on the mixture weights, we note that the sensitivity of the posterior estimations of the weights to the choice of a vanishes with the sample size increasing and advocate the default choice a=0.5, derived from Rousseau and Mengersen (2011). Another feature of this easily implemented alternative to the classical Bayesian solution is that the speeds of convergence of the posterior mean of the weight and of the corresponding posterior probability are quite similar.

[1]  E. George,et al.  Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity , 2016 .

[2]  L. Pericchi,et al.  BAYES FACTORS AND MARGINAL DISTRIBUTIONS IN INVARIANT SITUATIONS , 2016 .

[3]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[4]  S. Kaye William of Ockham , 2015 .

[5]  P. O’Neill,et al.  Bayesian model choice via mixture distributions with application to epidemics and population process models , 2014, 1411.7888.

[6]  Christian P. Robert,et al.  On the Jeffreys-Lindley Paradox , 2014, Philosophy of Science.

[7]  Stephen G. Walker,et al.  Label Switching in Bayesian Mixture Models: Deterministic Relabeling Strategies , 2014 .

[8]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[9]  Jan Sprenger,et al.  Testing a Precise Null Hypothesis: The Case of Lindley’s Paradox , 2013, Philosophy of Science.

[10]  V. Johnson Revised standards for statistical evidence , 2013, Proceedings of the National Academy of Sciences.

[11]  V. Johnson UNIFORMLY MOST POWERFUL BAYESIAN TESTS. , 2013, Annals of statistics.

[12]  J. Forster,et al.  The Whetstone and the Alum Block: Balanced Objective Bayesian Comparison of Nested Models for Discrete Data , 2013, 1310.0661.

[13]  A. Spanos Who Should Be Afraid of the Jeffreys-Lindley Paradox? , 2013, Philosophy of Science.

[14]  Aki Vehtari,et al.  A survey of Bayesian predictive methods for model assessment, selection and comparison , 2012 .

[15]  K. Mengersen,et al.  Asymptotic behaviour of the posterior distribution in overfitted mixture models , 2011 .

[16]  J.-M. Marin,et al.  Relevant statistics for Bayesian model choice , 2011, 1110.4700.

[17]  D. A. S. Fraser Is Bayes Posterior just Quick and Dirty Confidence , 2011 .

[18]  Jean-Marie Cornuet,et al.  Lack of confidence in ABC model choice , 2011, 1102.4432.

[19]  Catia Scricciolo,et al.  Posterior rates of convergence for Dirichlet mixtures of exponential power densities , 2011 .

[20]  Christian P. Robert,et al.  Inherent difficulties of non-Bayesian likelihood-based inference, as revealed by an examination of a recent book by Aitkin , 2010, 1012.2184.

[21]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[22]  Ronald Christensen,et al.  Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians , 2010 .

[23]  V. Johnson,et al.  On the use of non‐local prior densities in Bayesian hypothesis tests , 2010 .

[24]  John Geweke,et al.  Complete and Incomplete Econometric Models , 2010 .

[25]  C. Robert,et al.  Importance sampling methods for Bayesian discrimination between embedded models , 2009, 0910.2325.

[26]  C. Robert,et al.  Properties of nested sampling , 2008, 0801.3887.

[27]  A. V. D. Vaart,et al.  Adaptive Bayesian density estimation with location-scale mixtures , 2010 .

[28]  D. Fraser,et al.  Three enigmatic examples and inference from likelihood , 2009 .

[29]  Judith Rousseau,et al.  Bayesian Goodness of Fit Testing with Mixtures of Triangular Distributions , 2009 .

[30]  G. Suter The cult of statistical significance: how the standard error costs us jobs, justice, and lives by Steven T. Ziliak and Deirdre N. McCloskey , 2009 .

[31]  A. Gelman Objections to Bayesian statistics , 2008 .

[32]  M. Plummer Penalized loss functions for Bayesian model comparison. , 2008, Biostatistics.

[33]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[34]  Jean-Michel Marin,et al.  Bayesian Inference on Mixtures of Distributions , 2008, 0804.2413.

[35]  A. V. D. Vaart,et al.  Posterior convergence rates of Dirichlet mixtures at smooth densities , 2007, 0708.1885.

[36]  M. J. Bayarri,et al.  Extending conventional priors for testing general hypotheses in linear models , 2007 .

[37]  Amit Choudhury,et al.  APPROXIMATING THE CUMULATIVE DISTRIBUTION FUNCTION OF THE NORMAL DISTRIBUTION , 2007 .

[38]  Judith Rousseau,et al.  Approximating Interval hypothesis : p-values and Bayes factors , 2007 .

[39]  Tony O’Hagan Bayes factors , 2006 .

[40]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[41]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[42]  D. Cox,et al.  Frequentist statistics as a theory of inductive inference , 2006, math/0610846.

[43]  Adrian E. Raftery,et al.  Computing Normalizing Constants for Finite Mixture Models via Incremental Mixture Importance Sampling (IMIS) , 2006 .

[44]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .

[45]  A. V. D. Vaart,et al.  Misspecification in infinite-dimensional Bayesian statistics , 2006, math/0607023.

[46]  Ajay Jasra,et al.  Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling , 2005 .

[47]  Jean-Michel Marin,et al.  Bayesian Modelling and Inference on Mixtures of Distributions , 2005 .

[48]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[49]  Iven Van Mechelen,et al.  A Bayesian approach to the selection and testing of mixture models , 2003 .

[50]  J. Ghosh,et al.  Approximations and consistency of Bayes factors as model dimension grows , 2003 .

[51]  J. Berger Could Fisher, Jeffreys and Neyman Have Agreed on Testing? , 2003 .

[52]  Jouko Lampinen,et al.  Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities , 2002, Neural Computation.

[53]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[54]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[55]  James O. Berger,et al.  Objective Bayesian Methods for Model Selection: Introduction and Comparison , 2001 .

[56]  M. Steel,et al.  Benchmark Priors for Bayesian Model Averaging , 2001 .

[57]  C. Robert,et al.  Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .

[58]  I. Csiszar,et al.  The consistency of the BIC Markov order estimator , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[59]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions , 2000 .

[60]  J. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[61]  Carl E. Rasmussen,et al.  Occam's Razor , 2000, NIPS.

[62]  M. Stephens Dealing with label switching in mixture models , 2000 .

[63]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[64]  M. Schervish,et al.  Bayes Factors: What They are and What They are Not , 1999 .

[65]  James O. Berger,et al.  Simultaneous Bayesian-frequentist sequential testing of nested hypotheses , 1999 .

[66]  M. Steel,et al.  Benchmark Priors for Bayesian Model Averaging , 2001 .

[67]  Fulvio Spezzaferri,et al.  Alternative Bayes factors for model selection , 1997 .

[68]  T. Louis,et al.  Unified frequentist and Bayesian testing of a precise hypothesis , 1997 .

[69]  A. O’Hagan,et al.  Properties of intrinsic and fractional Bayes factors , 1997 .

[70]  V. Balasubramanian Statistical Inference, Occam's Razor, and Statistical Mechanics on the Space of Probability Distributions , 1996, Neural Computation.

[71]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[72]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[73]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[74]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[75]  A. O'Hagan,et al.  Fractional Bayes factors for model comparison , 1995 .

[76]  Christian Gourieroux,et al.  Statistics and econometric models , 1995 .

[77]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[78]  C. Robert The Bayesian choice , 1994 .

[79]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[80]  Gerd Gigerenzer,et al.  The superego, the ego, and the id in statistical reasoning , 1993 .

[81]  James O. Berger,et al.  Ockham's Razor and Bayesian Analysis , 1992 .

[82]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[83]  G. Casella,et al.  Reconciling Bayesian and Frequentist Evidence in the One-Sided Testing Problem , 1987 .

[84]  B. D. Finetti,et al.  Bayesian inference and decision techniques : essays in honor of Bruno de Finetti , 1986 .

[85]  Temple F. Smith Occam's razor , 1980, Nature.

[86]  J. Bernardo A Bayesian analysis of classical hypothesis testing , 1980 .

[87]  Erdogan Gunel,et al.  Bayes Factors from Mixed Probabilities , 1978 .

[88]  M. Pesaran,et al.  TESTING NON-NESTED NONLINEAR REGRESSION MODELS , 1978 .

[89]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[90]  Richard E. Quandt,et al.  A Comparison of Methods for Testing Nonnested Hypotheses , 1974 .

[91]  M. Degroot Doing What Comes Naturally: Interpreting a Tail Area as a Posterior Probability or as a Likelihood Ratio , 1973 .

[92]  Anthony C. Atkinson,et al.  A Method for Discriminating between Models , 1970 .

[93]  M. Degroot Optimal Statistical Decisions , 1970 .

[94]  D. Lindley A STATISTICAL PARADOX , 1957 .

[95]  Jerzy Neyman,et al.  The testing of statistical hypotheses in relation to probabilities a priori , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.

[96]  L. M. M.-T. Theory of Probability , 1929, Nature.