Prediction of performance level during a cognitive task from ongoing EEG oscillatory activities

[1]  K. Krippendorff Mathematical Theory of Communication , 2009 .

[2]  Klaus-Robert Müller,et al.  Berlin Brain-Computer Interface - The HCI communication channel for discovery , 2007, Int. J. Hum. Comput. Stud..

[3]  Alfonso Alba,et al.  Exploration of event-induced EEG phase synchronization patterns in cognitive tasks using a time–frequency-topography visualization system , 2007, Journal of Neuroscience Methods.

[4]  S. Benbadis,et al.  Normal Adult EEG and Patterns of Uncertain Significance , 2006, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[5]  W. Klimesch,et al.  Upper alpha ERD and absolute power: their meaning for memory performance. , 2006, Progress in brain research.

[6]  Philippe Renevey,et al.  SVM-based recursive feature elimination to compare phase synchronization computed from broadband and narrowband EEG signals in Brain-Computer Interfaces , 2005, Signal Process..

[7]  Maarten A. S. Boksem,et al.  Effects of mental fatigue on attention: an ERP study. , 2005, Brain research. Cognitive brain research.

[8]  J. Martinerie,et al.  Preictal state identification by synchronization changes in long-term intracranial EEG recordings , 2005, Clinical Neurophysiology.

[9]  Tzyy-Ping Jung,et al.  EURASIP Journal on Applied Signal Processing 2005:19, 3165–3174 c ○ 2005 Hindawi Publishing Corporation Estimating Driving Performance Based on EEG Spectrum Analysis , 2005 .

[10]  E. Gysels,et al.  Phase synchronization for the recognition of mental tasks in a brain-computer interface , 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[11]  Abdulhamit Subasi,et al.  Automatic recognition of alertness level by using wavelet transform and artificial neural network , 2004, Journal of Neuroscience Methods.

[12]  Kimron Shapiro,et al.  Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Coenen,et al.  Mental effort affects vigilance enduringly: after-effects in EEG and behavior. , 2004, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[14]  R. Kass,et al.  Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods , 2004 .

[15]  Xun Liu,et al.  Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI , 2004, NeuroImage.

[16]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[17]  Glenn F. Wilson,et al.  Real-Time Assessment of Mental Workload Using Psychophysiological Measures and Artificial Neural Networks , 2003, Hum. Factors.

[18]  C.W. Anderson,et al.  Comparison of linear, nonlinear, and feature selection methods for EEG signal classification , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[19]  Jin Fan,et al.  Cognitive and Brain Consequences of Conflict , 2003, NeuroImage.

[20]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[21]  John C Gore,et al.  An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. , 2002, Brain research. Cognitive brain research.

[22]  Michael E. Smith,et al.  Monitoring Task Loading with Multivariate EEG Measures during Complex Forms of Human-Computer Interaction , 2001, Hum. Factors.

[23]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[24]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[25]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[26]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[27]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[28]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[29]  O. Bertrand,et al.  Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans , 1999, Visual Neuroscience.

[30]  G. Pfurtscheller,et al.  Designing optimal spatial filters for single-trial EEG classification in a movement task , 1999, Clinical Neurophysiology.

[31]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[32]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[33]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[34]  J. Gondzio,et al.  Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization , 1999 .

[35]  C.W. Anderson,et al.  Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks , 1998, IEEE Transactions on Biomedical Engineering.

[36]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[37]  G. Pfurtscheller,et al.  EEG-based discrimination between imagination of right and left hand movement. , 1997, Electroencephalography and clinical neurophysiology.

[38]  J R Wolpaw,et al.  Spatial filter selection for EEG-based communication. , 1997, Electroencephalography and clinical neurophysiology.

[39]  T. Sejnowski,et al.  Estimating alertness from the EEG power spectrum , 1997, IEEE Transactions on Biomedical Engineering.

[40]  R. Tibshirani,et al.  Combining Estimates in Regression and Classification , 1996 .

[41]  Tzyy-Ping Jung,et al.  Using Feedforward Neural Networks to Monitor Alertness from Changes in EEG Correlation and Coherence , 1995, NIPS.

[42]  Sophocles J. Orfanidis,et al.  Introduction to signal processing , 1995 .

[43]  Michael Falkenstein,et al.  Effects of attention and time-pressure on P300 subcomponents and implications for mental workload research , 1995, Biological Psychology.

[44]  F. Varela Resonant cell assemblies: a new approach to cognitive functions and neuronal synchrony. , 1995, Biological research.

[45]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[46]  F. D. Silva Neural mechanisms underlying brain waves: from neural membranes to networks. , 1991 .

[47]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Richard Ragot,et al.  P300, as a function of S—R compatibility and motor programming , 1981, Biological Psychology.

[49]  E. Piso,et al.  Fitting the task to the man: An ergonomic approach: E. Grandjean Taylor & Francis, London, 1980, x + 379 pages, £ 14.50, cloth, £9.50 paper, third edition , 1980 .

[50]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .