Using invariance under the similarity group to solve geometric constraint systems

In the area of Computer Aided Design (CAD), the main feature of geometric constraint systems lies in their invariance under the direct isometry group. Several researchers have developed methods, which take advantage of this fact to decompose such systems into smaller sub-systems. In this paper, we show that considering the invariance under the direct similarity group leads to a new constructive method to solve geometric constraint systems encountered in CAD.

[1]  Xiao-Shan Gao,et al.  Solving spatial basic geometric constraint configurations with locus intersection , 2004, Comput. Aided Des..

[2]  Beat D. Brüderlin,et al.  Constructing three-dimensional geometric objects defined by constraints , 1987, I3D '86.

[3]  G. Sunde,et al.  A CAD System with Declarative Specification of Shape , 1987 .

[4]  Christoph M. Hoffmann,et al.  Decomposition Plans for Geometric Constraint Systems, Part I: Performance Measures for CAD , 2001, J. Symb. Comput..

[5]  Pascal Schreck Robustness in CAD geometric constructions , 2001, Proceedings Fifth International Conference on Information Visualisation.

[6]  Christoph M. Hoffmann,et al.  Decomposition Plans for Geometric Constraint Problems, Part II: New Algorithms , 2001, J. Symb. Comput..

[7]  Xiao-Shan Gao,et al.  Geometric constraint solving via C-tree decomposition , 2003, SM '03.

[8]  Christoph M. Hoffmann,et al.  Geometric constraint solver , 1995, Comput. Aided Des..

[9]  Pascal Schreck,et al.  Geometric Construction by Assembling Solved Subfigures , 1998, Artif. Intell..

[10]  Pascal Schreck,et al.  Solving Geometric Constraints Invariant Modulo the Similarity Group , 2003, ICCSA.

[11]  C. Hoffmann,et al.  Symbolic and numerical techniques for constraint solving , 1998 .

[12]  Sebastià Vila-Marta,et al.  Revisiting decomposition analysis of geometric constraint graphs , 2004, Comput. Aided Des..

[13]  Paul b. Montel,et al.  Lecons sur les constructions géométriques : professées au Collège de France en 1940-1941 , 1950 .

[14]  Philippe Serré Cohérence de la spécification d'un objet de l'espace euclidien à n dimensions , 2000 .

[15]  Caroline Essert,et al.  Sketch-based pruning of a solution space within a formal geometric constraint solver , 2000, Artif. Intell..

[16]  Pascal Schreck,et al.  Formal resolution of geometrical constraint systems by assembling , 1997, SMA '97.

[17]  J. C. Owen,et al.  Algebraic solution for geometry from dimensional constraints , 1991, SMA '91.

[18]  Dominique Michelucci,et al.  Solving geometric constraints by homotopy , 1995, IEEE Trans. Vis. Comput. Graph..

[19]  Christoph M. Hoffmann,et al.  Correctness proof of a geometric constraint solver , 1996, Int. J. Comput. Geom. Appl..