Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (I)

CFD (computational fluid dynamics) analyses that considered the dynamic interaction effects between the flow and a turbine were performed to evaluate the power output characteristics of two representative vertical-axis tidal-current turbines: an H-type Darrieus turbine and Gorlov helical turbine (GHT). For this purpose, a commercial CFD code, Star- CCM+, was utilized, and the power output characteristic were investigated in relation to the scale ratio using the relation between the Reynolds number and the lift-to-drag ratio. It was found that the power coefficients were significantly reduced when the scaled model t urbine was used, especially when the Reynolds number was lower than 10 5 . The power output characteristics of GHT in relation to the twisting angle were also investigated using a three-dimensional CFD analysis, and it was found that the power coefficient was maximized for the case of a Darrieus turbine, i.e., a twisting angle of 0°, and the torque pulsation ratio was minimized when the blade covered 360° for the case of a turbine with a twisting angle of 120°.