First-Principles Study on Mechanical, Electronic, and Magnetic Properties of Room Temperature Ferromagnetic Half-Metal MnNCl Monolayer

Two-dimensional ferromagnetic (FM) half-metals are highly desirable for the development of multifunctional spintronic nano-devices due to their 100% spin polarization and possible interesting single-spin electronic states. Herein, using first-principles calculations based on density functional theory (DFT) with the Perdew–Burke–Ernzerhof (PBE) functional, we demonstrate that the MnNCl monolayer is a promising FM half-metal for spintronics. Specifically, we systematically investigated its mechanical, magnetic, and electronic properties. The results reveal that the MnNCl monolayer has superb mechanic, dynamic, and thermal (ab initio molecular dynamics (AIMD) simulation at 900 K) stability. More importantly, its intrinsic FM ground state has a large magnetic moment (6.16 μB), a large magnet anisotropy energy (184.5 μeV), an ultra-high Curie temperature (952 K), and a wide direct band gap (3.10 eV) in the spin-down channel. Furthermore, by applying biaxial strain, the MnNCl monolayer can still maintain its half-metallic properties and shows an enhancement of magnetic properties. These findings establish a promising new two-dimensional (2D) magnetic half-metal material, which should expand the library of 2D magnetic materials.

[1]  R. Faccio,et al.  Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface. , 2022, Physical Chemistry, Chemical Physics - PCCP.

[2]  Yanjie Wang,et al.  Intrinsic ferromagnetic Janus Cr2PAs monolayer with controllable magnetic anisotropy , 2022, Physics Letters A.

[3]  A. Kakanakova-Georgieva,et al.  A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics , 2022, Nanotechnology.

[4]  Wei Han,et al.  Coming of the age with spintronics-based future information , 2022, SCIENTIA SINICA Physica, Mechanica & Astronomica.

[5]  M. Ghergherehchi,et al.  Two-dimensional FeTe2 and predicted Janus FeXS (X: Te and Se) monolayers with intrinsic half-metallic character: tunable electronic and magnetic properties via strain and electric field. , 2021, Physical chemistry chemical physics : PCCP.

[6]  Xiufeng Han,et al.  Magnetic two-dimensional van der Waals materials for spintronic devices , 2021, Chinese Physics B.

[7]  H. Bai,et al.  Two-Dimensional Janus FeXY (X, Y = Cl, Br, and I, X ≠ Y) Monolayers: Half-Metallic Ferromagnets with Tunable Magnetic Properties under Strain. , 2021, ACS applied materials & interfaces.

[8]  Jijun Zhao,et al.  Recent progress on 2D magnets: Fundamental mechanism, structural design and modification , 2021 .

[9]  Li Ding,et al.  Two-dimensional Weyl semi-half-metallic NiCS3 with a band structure controllable by the direction of magnetization. , 2021, Physical chemistry chemical physics : PCCP.

[10]  Xiaoli Fan,et al.  Ferromagnetic half-metal with high Curie temperature: Janus Mn2PAs monolayer , 2021, Journal of Materials Science.

[11]  T. Song,et al.  MnNBr Monolayer: A High‐Temperature Ferromagnetic Half‐Metal with Type‐II Weyl Fermions , 2021, physica status solidi (RRL) – Rapid Research Letters.

[12]  M. Modarresi,et al.  Two-dimensional chromium pnictides CrX (X=P,As,Sb) : Half-metallic ferromagnets with high Curie temperature , 2020 .

[13]  Yanfeng Ge,et al.  Large Magnetic Anisotropy Energy and Robust Half‐Metallic Ferromagnetism in 2D MnXSe4 (X = As, Sb) , 2020, Annalen der Physik.

[14]  Bingwen Zhang,et al.  Two-dimensional stable Mn based half metal and antiferromagnets promising for spintronics. , 2020, Nanoscale.

[15]  Yanfeng Ge,et al.  Robust intrinsic half-metallic ferromagnetism in stable 2D single-layer MnAsS4 , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Yu Yan,et al.  Prediction of Novel 2D Intrinsic Ferromagnetic Materials with High Curie Temperature and Large Perpendicular Magnetic Anisotropy , 2020 .

[17]  Zihan Shen,et al.  Two-dimensional intrinsic ferromagnetic half-metals: monolayers Mn3X4 (X = Te, Se, S) , 2020, Journal of Materials Science.

[18]  Jinlan Wang,et al.  Magnetic two‐dimensional layered crystals meet with ferromagnetic semiconductors , 2020, InfoMat.

[19]  M. Ding,et al.  Glide Mirror Plane Protected Nodal-Loop in Anisotropic Half-Metallic MnNF Monolayer. , 2019, The journal of physical chemistry letters.

[20]  Jinlan Wang,et al.  MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. , 2019, Nanoscale.

[21]  S. Federico,et al.  Tensor representation of magnetostriction for all crystal classes , 2018, Mathematics and Mechanics of Solids.

[22]  Jia-An Yan,et al.  Strain-tunable magnetic anisotropy in monolayer CrCl3 , CrBr3 , and CrI3 , 2018, Physical Review B.

[23]  Jinlan Wang,et al.  High Curie-temperature intrinsic ferromagnetism and hole doping-induced half-metallicity in two-dimensional scandium chlorine monolayers. , 2018, Nanoscale horizons.

[24]  Zhenming Xu,et al.  Two-Dimensional Manganese Nitride Monolayer with Room Temperature Rigid Ferromagnetism under Strain , 2018, The Journal of Physical Chemistry C.

[25]  Bin Xu,et al.  2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. , 2018, Journal of the American Chemical Society.

[26]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[27]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[28]  Jijun Zhao,et al.  YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics , 2017, Nano Research.

[29]  Paul R. C. Kent,et al.  Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2 , 2016 .

[30]  Xiaojun Wu,et al.  Half-metallicity in MnPSe₃ exfoliated nanosheet with carrier doping. , 2014, Journal of the American Chemical Society.

[31]  R. Wu,et al.  First-principles determination of the rhombohedral magnetostriction of Fe100-xAlx and Fe100-xGax alloys , 2012 .

[32]  H. Xiang,et al.  Effect of magnetic dipole-dipole interactions on the spin orientation and magnetic ordering of the spin-ladder compound Sr3Fe2O5. , 2009, Inorganic chemistry.

[33]  Y. Kawazoe,et al.  Ferromagnetism in semihydrogenated graphene sheet. , 2009, Nano letters.

[34]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[35]  Walter R. L. Lambrecht,et al.  Electronic structure of rare-earth nitrides using the LSDA+U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry , 2007 .

[36]  G. Wijs,et al.  Spin-Polarization in Half-Metals. , 2002 .

[37]  G. Guo,et al.  Magnetoelasticity of Fe: Possible failure of ab initio electron theory with the local-spin-density approximation and with the generalized-gradient approximation , 2002 .

[38]  A. Freeman,et al.  Spin}orbit induced magnetic phenomena in bulk metals and their surfaces and interfaces , 1999 .

[39]  A. Freeman,et al.  Magnetism, magneto-crystalline anisotropy, magnetostriction and MOKE at surfaces and interfaces , 1999 .

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[44]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[45]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[46]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[47]  R. Groot,et al.  Recent developments in half-metallic magnetism , 1986 .

[48]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[49]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[50]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[51]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[52]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[53]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[54]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[55]  Xinhua Zhu,et al.  Half-metallic double perovskite oxides: recent developments and future perspectives , 2022, Journal of Materials Chemistry C.

[56]  Y. Zhang 张,et al.  Magnetic two-dimensional van der Waals materials for spintronic devices , 2021 .

[57]  Jinlong Yang,et al.  Nodal-Loop Half Metallicity in Two-Dimensional Fe4N2 Pentagon Crystal with Room-Temperature Ferromagnetism , 2021, Nanoscale.

[58]  Daljit Kaur,et al.  Synthesis, magnetic ordering, transport studies on spintronic device heterostructures of 2D magnetic materials: A review , 2020 .

[59]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .