Zinc deposition and passivated hydrogen evolution in highly acidic sulphate electrolytes: Depassivation by nickel impurities

[1]  C. Cachet,et al.  On the nature of the ‘induction period’ during the electrowinning of zinc from nickel containing sulphate electrolytes , 1990 .

[2]  M. Petrova,et al.  The effect of nickel on the mechanism of the initial stages of zinc electrowinning from sulphate electrolytes. Part I. Investigations on a spectrally pure aluminium cathode , 1990 .

[3]  E. Frazer The Effect of Trace Lead on the Coulombic Efficiency of Zinc Electrowinning in High‐Purity Synthetic Solutions , 1988 .

[4]  E. Frazer,et al.  Effects of certain impurities on zinc electrowinning in high-purity synthetic solutions , 1988 .

[5]  T. O’keefe,et al.  Electrochemical monitoring of electrogalvanizing solutions , 1986 .

[6]  D. J. Mackinnon,et al.  Aluminium cathode effects in zinc electrowinning from industrial acid sulphate electrolyte , 1986 .

[7]  D. J. Mackinnon,et al.  The effects of nickel and cobalt and their interaction with antimony on zinc electrowinning from industrial acid sulphate electrolyte , 1986 .

[8]  M. Keddam Electrochimie, principes, methodes et applications : A.J. Bard et L. R. Faulkner Masson, Paris, 1983, 781 pp. , 1985 .

[9]  I. H. Warren Application of polarization measurements in the control of metal deposition , 1984 .

[10]  N. Penazzi,et al.  Zinc Electrocrystallization from impurity-containing sulphate baths , 1982 .

[11]  Yarong Wang,et al.  Voltammetric Evaluation of Zinc Electrowinning Solution Containing Nickel , 1980 .

[12]  M. Ksouri,et al.  On a Model for the Electrocrystallization of Zinc Involving an Autocatalytic Step , 1975 .

[13]  Stanley Bruckenstein,et al.  Electrochemical Kinetics: Theoretical and Experimental Aspects , 1967 .