A 12b 250 MS/s Pipelined ADC With Virtual Ground Reference Buffers

The virtual ground reference buffer (VGRB) technique is introduced as a means to improve the performance of switched-capacitor circuits. The technique enhances the performance by improving the feedback factor of the op-amp without affecting the signal gain. The bootstrapping action of the level-shifting buffers relaxes key op-amp performance requirements including unity-gain bandwidth, noise, open-loop gain and offset compared with conventional circuits. This reduces the design complexity and the power consumption of op-amp based circuits. Based on this technique, a 12 b pipelined ADC is implemented in 65 nm CMOS that achieves 67.0 dB SNDR at 250 MS/s and consumes 49.7 mW of power from a 1.2 V power supply.

[1]  Hae-Seung Lee,et al.  A 12 b 5-to-50 MS/s 0.5-to-1 V Voltage Scalable Zero-Crossing Based Pipelined ADC , 2012, IEEE Journal of Solid-State Circuits.

[2]  Ka Nang Leung,et al.  Development of Single-Transistor-Control LDO Based on Flipped Voltage Follower for SoC , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Boris Murmann,et al.  A 12-b, 30-MS/s, 2.95-mW Pipelined ADC Using Single-Stage Class-AB Amplifiers and Deterministic Background Calibration , 2012, IEEE Journal of Solid-State Circuits.

[4]  R.G. Carvajal,et al.  The flipped voltage follower: a useful cell for low-voltage low-power circuit design , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[5]  Un-Ku Moon,et al.  A 75.9dB-SNDR 2.96mW 29fJ/conv-step ringamp-only pipelined ADC , 2013, 2013 Symposium on VLSI Circuits.

[6]  Michael P. Flynn,et al.  11.5 A 100MS/s 10.5b 2.46mW comparator-less pipeline ADC using self-biased ring amplifiers , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[7]  Un-Ku Moon,et al.  Design of a Split-CLS Pipelined ADC With Full Signal Swing Using an Accurate But Fractional Signal Swing Opamp , 2010, IEEE Journal of Solid-State Circuits.

[8]  A.P. Chandrakasan,et al.  A Highly Integrated CMOS Analog Baseband Transceiver With 180 MSPS 13-bit Pipelined CMOS ADC and Dual 12-bit DACs , 2006, IEEE Journal of Solid-State Circuits.

[9]  Hae-Seung Lee,et al.  15.6 12b 250MS/S pipelined ADC with virtual ground reference buffers , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[10]  S P Willig Operational amplifiers. , 1993, Biomedical instrumentation & technology.

[11]  B. Razavi,et al.  A 10-Bit 500-MS/s 55-mW CMOS ADC , 2009, IEEE Journal of Solid-State Circuits.

[12]  Young-Kyun Cho,et al.  A 9.15mW 0.22mm2 10b 204MS/s pipelined SAR ADC in 65nm CMOS , 2010, IEEE Custom Integrated Circuits Conference 2010.

[13]  Boris Murmann,et al.  A 12-bit, 200-MS/s, 11.5-mW pipeline ADC using a pulsed bucket brigade front-end , 2013, 2013 Symposium on VLSI Circuits.

[14]  Hae-Seung Lee,et al.  A zero-crossing based 12b 100MS/s pipelined ADC with decision boundary gap estimation calibration , 2010, 2010 Symposium on VLSI Circuits.

[15]  M. Waltari,et al.  A 10-bit 200 MS/s CMOS parallel pipeline A/D converter , 2001, Proceedings of the 26th European Solid-State Circuits Conference.

[16]  Seung-Hoon Lee,et al.  An 11b 70 MHz 1.2 mm 2 49mW 0.18 um CMOS ADC with on–chip current/voltage references , 2002 .

[17]  Hyun Ho Boo,et al.  Virtual ground reference buffer technique in switched-capacitor circuits , 2015 .

[18]  Ian Galton,et al.  A 130 mW 100 MS/s Pipelined ADC With 69 dB SNDR Enabled by Digital Harmonic Distortion Correction , 2009, IEEE Journal of Solid-State Circuits.

[19]  Koichi Hamashita,et al.  Adaptive cancellation of gain and nonlinearity errors in pipelined ADCs , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[20]  Shouli Yan,et al.  A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13 µm CMOS , 2009, IEEE J. Solid State Circuits.

[21]  Seung-Hoon Lee,et al.  An 11b 70-MHz 1.2-mm/sup 2/ 49-mW 0.18-/spl mu/m CMOS ADC with on-chip current/voltage references , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Un-Ku Moon,et al.  An Over-60 dB True Rail-to-Rail Performance Using Correlated Level Shifting and an Opamp With Only 30 dB Loop Gain , 2008, IEEE Journal of Solid-State Circuits.

[23]  Hae-Seung Lee,et al.  A 12b 50MS/s fully differential zero-crossing-based ADC without CMFB , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[24]  Behzad Razavi,et al.  A 12-Bit 200-MHz CMOS ADC , 2009, IEEE Journal of Solid-State Circuits.

[25]  D.A. Johns,et al.  An 11-Bit 45 MS/s Pipelined ADC With Rapid Calibration of DAC Errors in a Multibit Pipeline Stage , 2007, IEEE Journal of Solid-State Circuits.

[26]  Un-Ku Moon,et al.  An Over-60dB True Rail-to-Rail Performance Using Correlated Level Shifting and an Opamp with 30dB Loop Gain , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[27]  Soon-Kyun Shin,et al.  A 12 bit 200 MS/s Zero-Crossing-Based Pipelined ADC With Early Sub-ADC Decision and Output Residue Background Calibration , 2014, IEEE Journal of Solid-State Circuits.

[28]  Michael P. Flynn,et al.  A 100 MS/s, 10.5 Bit, 2.46 mW Comparator-Less Pipeline ADC Using Self-Biased Ring Amplifiers , 2015, IEEE Journal of Solid-State Circuits.

[29]  L. Kushner,et al.  A process-scalable low-power charge-domain 13-bit pipeline ADC , 2008, 2008 IEEE Symposium on VLSI Circuits.

[30]  Steve Winder,et al.  Operational Amplifiers , 1971 .

[31]  Hae-Seung Lee,et al.  A CMOS op amp with fully-differential gain-enhancement , 1994 .

[32]  Dong-Young Chang,et al.  11.6 A 21mW 15b 48MS/s zero-crossing pipeline ADC in 0.13μm CMOS with 74dB SNDR , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[33]  Kazuki Sobue,et al.  Ring Amplifiers for Switched Capacitor Circuits , 2012, IEEE Journal of Solid-State Circuits.