Multiconfiguration wave functions for quantum Monte Carlo calculations of first‐row diatomic molecules

We use the variance minimization method to determine accurate wave functions for first‐row homonuclear diatomic molecules. The form of the wave function is a product of a sum of determinants and a generalized Jastrow factor. One of the important features of the calculation is that we are including low‐lying determinants corresponding to single and double excitations from the Hartree–Fock configuration within the space of orbitals whose atomic principal quantum numbers do not exceed those occurring in the Hartree–Fock configuration. The idea is that near‐degeneracy correlation is most effectively described by a linear combination of low‐lying determinants whereas dynamic correlation is well described by the generalized Jastrow factor. All the parameters occurring in both the determinantal and the Jastrow parts of the wave function are optimized. The optimized wave functions recover 79%–94% of the correlation energy in variational Monte Carlo and 93%–99% of the correlation energy in diffusion Monte Carlo.

[1]  C. Dunn,et al.  The Normal Helium Atom , 1935 .

[2]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[3]  N. Handy,et al.  A condition to remove the indeterminacy in interelectronic correlation functions , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  A. C. Wahl,et al.  Hartree-Fock-Roothaan wavefunctions for diatomic molecules: II. First-row homonuclear systems A2, A2±, and A2∗ , 1974 .

[5]  Kamcl Advances in chemical physics, vol. XXXV , 1977 .

[6]  M. H. Kalos,et al.  A new look at correlation energy in atomic and molecular systems. II. The application of the Green’s function Monte Carlo method to LiH , 1982 .

[7]  J. English,et al.  Laser vaporization of beryllium: Gas phase spectrum and molecular potential of Be2 , 1984 .

[8]  P. Reynolds,et al.  Molecular physics and chemistry applications of quantum Monte Carlo , 1986 .

[9]  J. Gottschalk,et al.  Coordinate systems and analytic expansions for three-body atomic wavefunctions. III. Derivative continuity via solutions to Laplace's equation , 1987 .

[10]  P. Reynolds,et al.  Valence quantum Monte Carlo with ab initio effective core potentials , 1987 .

[11]  E. Maslen,et al.  Coordinate systems and analytic expansions for three-body atomic wavefunctions. I. Partial summation for the Fock expansion in hyperspherical coordinates , 1987 .

[12]  Wilson,et al.  Optimized trial wave functions for quantum Monte Carlo calculations. , 1988, Physical review letters.

[13]  R. Bishop,et al.  Recent Progress in MANY-BODY THEORIES , 1988 .

[14]  P. Reynolds,et al.  Monte Carlo study of electron correlation functions for small molecules , 1989 .

[15]  G. A. Petersson,et al.  The beryllium dimer potential , 1989 .

[16]  Joseph Delhalle,et al.  Numerical determination of the electronic structure of atoms, diatomic and polyatomic molecules , 1989 .

[17]  Zhiwei Sun,et al.  Optimized trial functions for quantum Monte Carlo , 1990 .

[18]  Jules W. Moskowitz,et al.  Correlated Monte Carlo wave functions for the atoms He through Ne , 1990 .

[19]  David Fincham,et al.  Computer simulation studies in condensed matter physics. Recent developments , 1990 .

[20]  Morgan,et al.  Fock's expansion, Kato's cusp conditions, and the exponential ansatz. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[21]  Stephen R. Langhoff,et al.  Theoretical study of the spectroscopy of B2 , 1991 .

[22]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[23]  K. Schmidt,et al.  Quantum simulation of the electronic structure of diatomic molecules , 1992 .

[24]  W. Lester,et al.  Optimization of a multideterminant wave function for quantum Monte Carlo: Li2 (X 1Σ+g) , 1992 .

[25]  C. Umrigar,et al.  A diffusion Monte Carlo algorithm with very small time-step errors , 1993 .

[26]  Rick A. Kendall,et al.  BENCHMARK CALCULATIONS WITH CORRELATED MOLECULAR WAVE FUNCTIONS. III: CONFIGURATION INTERACTION CALCULATIONS ON FIRST ROW HOMONUCLEAR DIATOMICS , 1993 .

[27]  Umrigar,et al.  Accelerated Metropolis method. , 1993, Physical review letters.

[28]  Davidson,et al.  Ground-state correlation energies for atomic ions with 3 to 18 electrons. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[29]  A. Savin,et al.  A systematic study on the fixed-node and localization error in quantum Monte Carlo calculations with pseudopotentials for group III elements , 1994 .

[30]  Peter Reynolds,et al.  Monte Carlo Methods In Ab Initio Quantum Chemistry , 1994 .

[31]  James B. Anderson,et al.  Fixed-node quantum Monte Carlo , 1995 .