Efficient Algorithms for Shortest-Path and Maximum-Flow Problems in Planar Graphs

[1]  Karl Georg Christian von Staudt Geometrie der Lage , 1847 .

[2]  D. M. Y. Sommerville,et al.  An Introduction to The Geometry of N Dimensions , 2022 .

[3]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[4]  Andrew V. Goldberg,et al.  Finding Minimum-Cost Circulations by Successive Approximation , 1990, Math. Oper. Res..

[5]  Saunders Mac Lane,et al.  A combinatorial condition for planar graphs , 1937 .

[6]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[7]  Alon Itai,et al.  Maximum Flow in Planar Networks , 1979, SIAM J. Comput..

[8]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[9]  Erin W. Chambers,et al.  Multiple source shortest paths in a genus g graph , 2007, SODA '07.

[10]  Wei Yu,et al.  Distance Oracles for Sparse Graphs , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[11]  G. Dantzig On the Shortest Route Through a Network , 1960 .

[12]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Sergio Cabello,et al.  Many Distances in Planar Graphs , 2006, SODA '06.

[14]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2006, J. Comput. Syst. Sci..

[15]  Norbert Zeh,et al.  An External Memory Data Structure for Shortest Path Queries , 1999, COCOON.

[16]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..

[17]  Christian Sommer,et al.  More Compact Oracles for Approximate Distances in Planar Graphs , 2011, ArXiv.

[18]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Philip N. Klein,et al.  Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time , 2011, FOCS.

[20]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Christian Sommer,et al.  Approximate shortest path and distance queries in networks , 2010 .

[22]  G. Borradaile,et al.  Exploiting Planarity for Network Flow and Connectivity Problems , 2008 .

[23]  D. R. Fulkerson,et al.  Construction of maximal dynamic flows in networks. , 1957 .

[24]  Philip N. Klein,et al.  Shortest paths in directed planar graphs with negative lengths: A linear-space O(n log2 n)-time algorithm , 2010, TALG.

[25]  Karsten Weihe,et al.  The vertex-disjoint menger problem in planar graphs , 1997, SODA '93.

[26]  Christian Sommer,et al.  Exact distance oracles for planar graphs , 2010, SODA.

[27]  Haim Kaplan,et al.  Submatrix maximum queries in Monge matrices and Monge partial matrices, and their applications , 2012, SODA.

[28]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 2002, JACM.

[29]  Jehoshua Bruck,et al.  Efficient Algorithms for Reconfiguration in VLSI/WSI Arrays , 1990, IEEE Trans. Computers.

[30]  Christian Wulff-Nilsen,et al.  Shortest Paths in Planar Graphs with Real Lengths in O(nlog2n/loglogn) Time , 2009, ESA.

[31]  Alok Aggarwal,et al.  Geometric applications of a matrix-searching algorithm , 1987, SCG '86.

[32]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[33]  Shang-Hua Teng,et al.  Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs , 2010, STOC '11.

[34]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[35]  Subhash Suri,et al.  Efficient Breakout Routing in Printed Circuit Boards (Extended Abstract) , 1997, WADS.

[36]  Dorit S. Hochbaum,et al.  The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem , 2008, Oper. Res..

[37]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.

[38]  Hristo Djidjev,et al.  On-Line Algorithms for Shortest Path Problems on Planar Digraphs , 1996, WG.

[39]  Sairam Subramanian Parallel and dynamic shortest-path algorithms for sparse graphs , 1995 .

[40]  Philip N. Klein,et al.  An O (n log n) algorithm for maximum st-flow in a directed planar graph , 2006, SODA '06.

[41]  Mikkel Thorup,et al.  Maintaining information in fully dynamic trees with top trees , 2003, TALG.

[42]  Philip N. Klein,et al.  A Fully Dynamic Approximation Scheme for Shortest Paths in Planar Graphs , 1998, Algorithmica.

[43]  Andrew V. Goldberg,et al.  Recent Developments in Maximum Flow Algorithms (Invited Lecture) , 1998, SWAT.

[44]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[45]  Jinhui Xu,et al.  Shortest path queries in planar graphs , 2000, STOC '00.

[46]  Mihai Patrascu,et al.  Distance Oracles beyond the Thorup-Zwick Bound , 2014, SIAM J. Comput..

[47]  Abraham P. Punnen,et al.  A survey of very large-scale neighborhood search techniques , 2002, Discret. Appl. Math..

[48]  Francis Y. L. Chin,et al.  Escaping a Grid by Edge-Disjoint Paths , 2000, SODA '00.

[49]  Gary L. Miller,et al.  Finding Small Simple Cycle Separators for 2-Connected Planar Graphs , 1986, J. Comput. Syst. Sci..

[50]  L. Heffter Ueber das Problem der Nachbargebiete , 1891 .

[51]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[52]  Robert E. Tarjan,et al.  Making data structures persistent , 1986, STOC '86.

[53]  Ian H. Jermyn,et al.  Region extraction from multiple images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[54]  Uzi Vishkin,et al.  Recursive Star-Tree Parallel Data Structure , 1993, SIAM J. Comput..

[55]  Ian H. Jermyn,et al.  Globally Optimal Regions and Boundaries as Minimum Ratio Weight Cycles , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[57]  Grammati E. Pantziou,et al.  Improved Algorithms for Dynamic Shortest Paths , 2000, Algorithmica.

[58]  Peter Elias,et al.  A note on the maximum flow through a network , 1956, IRE Trans. Inf. Theory.

[59]  Alberto Marchetti-Spaccamela,et al.  Dynamic algorithms for shortest paths in planar graphs , 1991, Theor. Comput. Sci..

[60]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[61]  Michiel H. M. Smid,et al.  Planar Spanners and Approximate Shortest Path Queries among Obstacles in the Plane , 1996, ESA.

[62]  Joseph S. B. Mitchell,et al.  On maximum flows in polyhedral domains , 1988, SCG '88.

[63]  Ingemar J. Cox,et al.  "Ratio regions": a technique for image segmentation , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[64]  Dorit S. Hochbaum,et al.  An efficient algorithm for image segmentation, Markov random fields and related problems , 2001, JACM.

[65]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1998, JACM.

[66]  David Eppstein,et al.  Studying (non-planar) road networks through an algorithmic lens , 2008, GIS '08.

[67]  Amos Fiat,et al.  Highway dimension, shortest paths, and provably efficient algorithms , 2010, SODA '10.

[68]  Samir Khuller,et al.  The Lattice Structure of Flow in Planar Graphs , 1993, SIAM J. Discret. Math..

[69]  Lukasz Kowalik,et al.  Oracles for bounded-length shortest paths in planar graphs , 2006, TALG.

[70]  T. E. Harris,et al.  Fundamentals of a Method for Evaluating Rail Net Capacities , 1955 .

[71]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[72]  Ivan Stojmenovic,et al.  Routing with Guaranteed Delivery in Ad Hoc Wireless Networks , 1999, DIALM '99.

[73]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[74]  Jeff Erickson,et al.  Maximum flows and parametric shortest paths in planar graphs , 2010, SODA '10.

[75]  Francis Y. L. Chin,et al.  A Faster Algorithm for Finding Disjoint Paths in Grids , 1999, ISAAC.

[76]  Ken-ichi Kawarabayashi,et al.  Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs , 2011, ICALP.

[77]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[78]  W. Wei-Ming Dai,et al.  Single-layer fanout routing and routability analysis for ball grid arrays , 1995, Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[79]  Refael Hassin,et al.  Maximum Flow in (s, t) Planar Networks , 1981, Inf. Process. Lett..

[80]  D. Rose,et al.  Generalized nested dissection , 1977 .

[81]  Philip N. Klein,et al.  Multiple-Source Single-Sink Maximum Flow in Directed Planar Graphs in O(diameter · n log n) Time , 2011, WADS.

[82]  Gary L. Miller,et al.  Flow in Planar Graphs with Multiple Sources and Sinks , 1995, SIAM J. Comput..

[83]  David Eppstein Dynamic Connectivity in Digital Images , 1997, Inf. Process. Lett..

[84]  Daniel Cremers,et al.  Efficient planar graph cuts with applications in Computer Vision , 2009, CVPR.

[85]  Francis Y. L. Chin,et al.  Efficient Algorithms for Finding the Maximum Number of Disjoint Paths in Grids , 2000, J. Algorithms.

[86]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[87]  Glencora Borradaile,et al.  Min st-cut Oracle for Planar Graphs with Near-Linear Preprocessing Time , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[88]  Haim Kaplan,et al.  Maximum Flow in Directed Planar Graphs with Vertex Capacities , 2010, Algorithmica.

[89]  Mihai Patrascu,et al.  Distance Oracles beyond the Thorup-Zwick Bound , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[90]  Günter Rote,et al.  Obnoxious centers in graphs , 2007, SODA '07.

[91]  Robert E. Tarjan,et al.  Scaling and related techniques for geometry problems , 1984, STOC '84.

[92]  Lars Arge,et al.  External Data Structures for Shortest Path Queries on Planar Digraphs , 2005, ISAAC.

[93]  Yahav Nussbaum,et al.  Improved Distance Queries in Planar Graphs , 2010, WADS.

[94]  Olga Veksler,et al.  Stereo Correspondence with Compact Windows via Minimum Ratio Cycle , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[95]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[96]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[97]  Andrew V. Goldberg,et al.  Scaling algorithms for the shortest paths problem , 1995, SODA '93.

[98]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[99]  Erin W. Chambers,et al.  Homology flows, cohomology cuts , 2009, STOC '09.

[100]  Philip N. Klein,et al.  Preprocessing an undirected planar network to enable fast approximate distance queries , 2002, SODA '02.

[101]  David Eppstein,et al.  Maintenance of a minimum spanning forest in a dynamic planar graph , 1990, SODA '90.

[102]  John H. Reif,et al.  Minimum s-t Cut of a Planar Undirected Network in O(n log2(n)) Time , 1983, SIAM J. Comput..

[103]  L. R. Ford,et al.  NETWORK FLOW THEORY , 1956 .

[104]  Daniel J. Kleitman,et al.  An Almost Linear Time Algorithm for Generalized Matrix Searching , 1990, SIAM J. Discret. Math..

[105]  Alok Aggarwal,et al.  Applications of generalized matrix searching to geometric algorithms , 1990, Discret. Appl. Math..

[106]  A. Hoffman ON SIMPLE LINEAR PROGRAMMING PROBLEMS , 2003 .

[107]  Jeanette P. Schmidt,et al.  All Highest Scoring Paths in Weighted Grid Graphs and Their Application to Finding All Approximate Repeats in Strings , 1998, SIAM J. Comput..

[108]  Robert E. Tarjan,et al.  Network Flow Algorithms , 1989 .

[109]  A. Schrijver On the History of Combinatorial Optimization (Till 1960) , 2005 .

[110]  Piotr Sankowski,et al.  Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.

[111]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[112]  Elke A. Rundensteiner,et al.  Hierarchical optimization of optimal path finding for transportation applications , 1996, CIKM '96.