Magnesium degradation as determined by artificial neural networks.

Magnesium degradation under physiological conditions is a highly complex process in which temperature, the use of cell culture growth medium and the presence of CO2, O2 and proteins can influence the corrosion rate and the composition of the resulting corrosion layer. Due to the complexity of this process it is almost impossible to predict the parameters that are most important and whether some parameters have a synergistic effect on the corrosion rate. Artificial neural networks are a mathematical tool that can be used to approximate and analyse non-linear problems with multiple inputs. In this work we present the first analysis of corrosion data obtained using this method, which reveals that CO2 and the composition of the buffer system play a crucial role in the corrosion of magnesium, whereas O2, proteins and temperature play a less prominent role.

[1]  T. Kiaer,et al.  Intraosseous pressure and partial pressures of oxygen and carbon dioxide in osteoarthritis. , 1989, Seminars in arthritis and rheumatism.

[2]  Berend Denkena,et al.  Biodegradable magnesium implants for orthopedic applications , 2012, Journal of Materials Science.

[3]  E. Mcbride,et al.  ABSORBABLE METAL IN BONE SURGERY: A FURTHER REPORT ON THE USE OF MAGNESIUM ALLOYS , 1938 .

[4]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[5]  N Birbilis,et al.  Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. , 2012, Acta biomaterialia.

[6]  G. Os,et al.  The interaction of sodium, potassium, calcium, and magnesium with human serum albumin, studied by means of conductivity measurements , 2010 .

[7]  D. Shum-Tim,et al.  Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. , 2013, Acta biomaterialia.

[8]  Tim Woodfield,et al.  Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[9]  H. Liu,et al.  The effects of surface and biomolecules on magnesium degradation and mesenchymal stem cell adhesion. , 2011, Journal of biomedical materials research. Part A.

[10]  Yufeng Zheng,et al.  In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. , 2012, Acta biomaterialia.

[11]  Baoping Zhang,et al.  Preparation and characterization of a new biomedical Mg–Zn–Ca alloy , 2012 .

[12]  Qiuming Peng,et al.  Preparation and properties of high purity Mg-Y biomaterials. , 2010, Biomaterials.

[13]  Jonas S Almeida,et al.  Predictive non-linear modeling of complex data by artificial neural networks. , 2002, Current opinion in biotechnology.

[14]  J. Roelandt,et al.  Images in Cardiovascular Medicine , 2000 .

[15]  Yunchang Xin,et al.  Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. , 2008, Acta biomaterialia.

[16]  S. Stanzl-Tschegg,et al.  Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. , 2011, Acta biomaterialia.

[17]  G Reibnegger,et al.  Artificial Neural Networks in Laboratory Medicine and Medical Outcome Prediction , 1999, Clinical chemistry and laboratory medicine.

[18]  O. Maier Über die Verwendbarkeit von Leichtmetallen in der Chirurgie (metallisches Magnesium als Reizmittel zur Knochenneubildung) , 1940, Deutsche Zeitschrift für Chirurgie.

[19]  Akiko Yamamoto,et al.  Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro , 2009 .

[20]  P. Chu,et al.  In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. , 2011, Acta biomaterialia.

[21]  S. Virtanen,et al.  Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. , 2008, Journal of biomedical materials research. Part A.

[22]  N. Fogh‐Andersen Albumin/calcium association at different pH, as determined by potentiometry. , 1977, Clinical chemistry.

[23]  David Brynn Hibbert,et al.  An introduction to Bayesian methods for analyzing chemistry data Part II: A review of applications of Bayesian methods in chemistry , 2009 .

[24]  P. Hunold,et al.  Images in cardiovascular medicine. Novel magnetic resonance-compatible coronary stent: the absorbable magnesium-alloy stent. , 2005, Circulation.

[25]  X. M. Zhang,et al.  In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin , 2010 .

[26]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[27]  Christel A. S. Bergström,et al.  Accuracy of calculated pH-dependent aqueous drug solubility. , 2004, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[28]  Y. Guillaume,et al.  Chromatographic study of magnesium and calcium binding to immobilized human serum albumin. , 1999, Journal of chromatography. B, Biomedical sciences and applications.

[29]  S. Agatonovic-Kustrin,et al.  Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. , 2000, Journal of pharmaceutical and biomedical analysis.

[30]  J. C. Belchior,et al.  Analysis of the applicability of artificial neural networks for studying blood plasma: determination of magnesium ion concentration as a case study , 2005, Clinical chemistry and laboratory medicine.

[31]  P. Chu,et al.  Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3 , 2011 .

[32]  W. Kane Fundamental concepts in bone-blood flow studies. , 1968, Journal of Bone and Joint Surgery. American volume.

[33]  D. Brauer,et al.  Solubility of glasses in the system P2O5–CaO–MgO–Na2O–TiO2: Experimental and modeling using artificial neural networks , 2007 .

[34]  L. Petersen,et al.  Ex Vivo Examination of the Biocompatibility of Biodegradable Magnesium via Microdialysis in the Isolated Perfused Bovine Udder Model , 2011, The International journal of artificial organs.

[35]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[36]  Wei Ke,et al.  Review of studies on corrosion of magnesium alloys , 2006 .

[37]  M. Bohner,et al.  Can bioactivity be tested in vitro with SBF solution? , 2009, Biomaterials.

[38]  Christopher P. Cheng,et al.  Inferior vena caval hemodynamics quantified in vivo at rest and during cycling exercise using magnetic resonance imaging. , 2003, American journal of physiology. Heart and circulatory physiology.

[39]  M. S. Yong,et al.  In vitro degradation behavior of M1A magnesium alloy in protein-containing simulated body fluid , 2011 .

[40]  Raimund Erbel,et al.  Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial , 2007, The Lancet.

[41]  Berend Denkena,et al.  In vitro corrosion of ZEK100 plates in Hank's Balanced Salt Solution , 2012, Biomedical engineering online.

[42]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[43]  William J. Welsh,et al.  Using Surrogate Modeling in the Prediction of Fibrinogen Adsorption onto Polymer Surfaces , 2004, J. Chem. Inf. Model..

[44]  P. Chu,et al.  Influence of Tris in simulated body fluid on degradation behavior of pure magnesium , 2010 .

[45]  M. Manuel,et al.  Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. , 2012, Journal of the mechanical behavior of biomedical materials.

[46]  J. C. Belchior,et al.  Analyses of the temperature and pH effects on the complexation of magnesium and calcium in human blood plasma: an approach using artificial neural networks , 2007, Analytical and bioanalytical chemistry.

[47]  Ke Yang,et al.  In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. , 2007, Journal of biomedical materials research. Part A.

[48]  W. Mueller,et al.  Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. , 2009, Journal of biomedical materials research. Part A.

[49]  R. Raman,et al.  Evaluating the stress corrosion cracking susceptibility of Mg–Al–Zn alloy in modified-simulated body fluid for orthopaedic implant application , 2008 .

[50]  N. Sharkey,et al.  The binding of metal salts and corrosion products to cells and proteins in vitro. , 1984, Journal of biomedical materials research.

[51]  T. Woodfield,et al.  In-vitro dissolution of magnesium-calcium binary alloys: clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[52]  Romain Valabrègue,et al.  Relation between Cerebral Blood Flow and Metabolism Explained by a Model of Oxygen Exchange , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[53]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[54]  R. Willumeit,et al.  XPS Studies of Magnesium Surfaces after Exposure to Dulbecco's Modified Eagle Medium, Hank's Buffered Salt Solution, and Simulated Body Fluid , 2010 .

[55]  J. Cowan,et al.  Biological coordination chemistry of magnesium, sodium, and potassium ions. Protein and nucleotide binding sites , 1994 .

[56]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[57]  Y. Zheng,et al.  In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. , 2010, Acta biomaterialia.

[58]  Raimund Erbel,et al.  Drug-eluting bioabsorbable magnesium stent. , 2004, Journal of interventional cardiology.

[59]  Huajian Gao,et al.  Identification of elastic-plastic material parameters from pyramidal indentation of thin films , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[60]  M. Kannan Influence of microstructure on the in-vitro degradation behaviour of magnesium alloys , 2010 .

[61]  P. Chu,et al.  Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin , 2007 .

[62]  J. Straumfjord,et al.  Buffer capacities of human blood and plasma. , 1958, Clinical chemistry.

[63]  Lingling Zhu,et al.  Oxygen, a Key Factor Regulating Cell Behavior during Neurogenesis and Cerebral Diseases , 2011, Front. Mol. Neurosci..

[64]  Daniel Perchy,et al.  In vitro evaluation of the surface effects on magnesium-yttrium alloy degradation and mesenchymal stem cell adhesion. , 2012, Journal of biomedical materials research. Part A.

[65]  E. Aghion,et al.  In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy , 2012, Journal of Materials Science: Materials in Medicine.

[66]  R. Willumeit,et al.  Ion release from magnesium materials in physiological solutions under different oxygen tensions , 2011, Journal of Materials Science: Materials in Medicine.

[67]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[68]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[69]  Janine Fischer,et al.  Chemical surface alteration of biodegradable magnesium exposed to corrosion media. , 2011, Acta biomaterialia.

[70]  G. S. Makin,et al.  Velocity of Blood Flow in Normal Human Venae Cavae , 1968 .

[71]  Sunderman Fw,et al.  Studies in serum electrolytes. XVIII. The magnesium-binding property of the serum proteins. , 1952 .

[72]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[73]  Frank Feyerabend,et al.  Effects of corrosion environment and proteins on magnesium corrosion , 2012 .

[74]  C. Xie,et al.  In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy , 2009 .

[75]  G. Rechnitz,et al.  Magnesium-albumin binding measurements using ion-selective membrane electrodes. , 1974, Clinical biochemistry.

[76]  C. Wen,et al.  Mg-Zr-Sr alloys as biodegradable implant materials. , 2012, Acta biomaterialia.