Novel gene expression domains reveal early patterning of the Xenopus endoderm.

[1]  N. Papalopulu,et al.  Molecular components of the endoderm specification pathway in Xenopus tropicalis , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[2]  R. Shivdasani Molecular regulation of vertebrate early endoderm development. , 2002, Developmental biology.

[3]  K. Kullander,et al.  Mechanisms and functions of eph and ephrin signalling , 2002, Nature Reviews Molecular Cell Biology.

[4]  W. Lutz,et al.  Regulation of N-myc expression in development and disease. , 2002, Cancer letters.

[5]  E. Davidson,et al.  New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization. , 2002, Developmental biology.

[6]  E. Davidson,et al.  brachyury Target genes in the early sea urchin embryo isolated by differential macroarray screening. , 2002, Developmental biology.

[7]  Danmei Liu,et al.  α2-HS Glycoprotein/Fetuin, a Transforming Growth Factor-β/Bone Morphogenetic Protein Antagonist, Regulates Postnatal Bone Growth and Remodeling* , 2002, The Journal of Biological Chemistry.

[8]  D. Stainier A glimpse into the molecular entrails of endoderm formation. , 2002, Genes & development.

[9]  J. Slack,et al.  Endoderm specification and differentiation in Xenopus embryos. , 2001, Developmental biology.

[10]  M. Whitman,et al.  Timing of endogenous activin-like signals and regional specification of the Xenopus embryo. , 2001, Development.

[11]  A. Zorn,et al.  Gene expression in the embryonic Xenopus liver , 2001, Mechanisms of Development.

[12]  M. Walport,et al.  Complement. Second of two parts. , 2001, The New England journal of medicine.

[13]  M. Walport Complement. First of two parts. , 2001, The New England journal of medicine.

[14]  T. Miyata,et al.  Characterization of the human NDRG gene family: a newly identified member, NDRG4, is specifically expressed in brain and heart. , 2001, Genomics.

[15]  C. Wylie,et al.  Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. , 2001, Development.

[16]  R. Harland,et al.  Use of large-scale expression cloning screens in the Xenopus laevis tadpole to identify gene function. , 2000, Developmental biology.

[17]  E. Davidson,et al.  Recovery of developmentally defined gene sets from high-density cDNA macroarrays. , 2000, Developmental biology.

[18]  H. Lehrach,et al.  Large-scale screen for genes controlling mammalian embryogenesis, using high-throughput gene expression analysis in mouse embryos , 2000, Mechanisms of Development.

[19]  R. Patient,et al.  A role for GATA5 in Xenopus endoderm specification. , 2000, Development.

[20]  B. Mitchell,et al.  Inhibition of T lymphocyte activation in mice heterozygous for loss of the IMPDH II gene. , 2000, The Journal of clinical investigation.

[21]  M Whitman,et al.  Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. , 2000, Development.

[22]  N. Messenger,et al.  Primary neuronal differentiation in Xenopus embryos is linked to the beta(3) subunit of the sodium pump. , 2000, Developmental biology.

[23]  J. Slack,et al.  The Xenopus tadpole gut: fate maps and morphogenetic movements. , 2000, Development.

[24]  D. Wilkinson,et al.  Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin‐B ligands , 1999, Developmental dynamics : an official publication of the American Association of Anatomists.

[25]  B. Liu,et al.  Structure of the human gene for lysosomal di-N-acetylchitobiase. , 1999, Glycobiology.

[26]  J. Gurdon,et al.  Anterior Endomesoderm Specification in Xenopusby Wnt/-catenin and TGF- Signalling Pathways , 1999 .

[27]  S. Shenolikar,et al.  Physiologic importance of protein phosphatase inhibitors. , 1998, Frontiers in bioscience : a journal and virtual library.

[28]  Martin Vingron,et al.  Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning , 1998, Mechanisms of Development.

[29]  J. Slack,et al.  Development of the gut in Xenopus laevis , 1998, Developmental dynamics : an official publication of the American Association of Anatomists.

[30]  M. Krinks,et al.  A novel Xenopus homologue of bone morphogenetic protein-7 (BMP-7). , 1997, Genes and function.

[31]  Wiklund Ra,et al.  First of two parts , 1997 .

[32]  I. Daar,et al.  Identification of XLerk, an Eph family ligand regulated during mesoderm induction and neurogenesis in Xenopus laevis , 1997, Oncogene.

[33]  T. Miyata,et al.  Homocysteine-respondent Genes in Vascular Endothelial Cells Identified by Differential Display Analysis , 1996, The Journal of Biological Chemistry.

[34]  C. Niehrs,et al.  The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controling dorsoventral patterning of Xenopus mesoderm , 1996 .

[35]  J. Smith,et al.  Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. , 1996, Development.

[36]  G. von Dassow,et al.  Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. , 1996, Development.

[37]  Howard C. Tenenbaum,et al.  Fetuin/α2-HS Glycoprotein Is a Transforming Growth Factor-β Type II Receptor Mimic and Cytokine Antagonist* , 1996, The Journal of Biological Chemistry.

[38]  Y. Jiang,et al.  The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. , 1996, Developmental biology.

[39]  R. Craig,et al.  Primary sequence and developmental expression pattern of mRNAs and protein for an alpha1 subunit of the sodium pump cloned from the neural plate of Xenopus laevis. , 1996, Developmental biology.

[40]  N. Papalopulu,et al.  A Xenopus gene, Xbr-1, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. , 1996, Developmental biology.

[41]  J. Lambris,et al.  The third component of Xenopus complement: cDNA cloning, structural and functional analysis, and evidence for an alternate C3 transcript , 1995, European journal of immunology.

[42]  J. Hsuan,et al.  A target for Src in mitosis , 1994, Nature.

[43]  D. Shalloway,et al.  An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis , 1994, Nature.

[44]  K. Dziegielewska,et al.  Fetuin ‐ an old friend revisited , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[45]  P. Good,et al.  A nervous system-specific isotype of the beta subunit of Na+,K(+)-ATPase expressed during early development of Xenopus laevis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J C Smith,et al.  Vegetal pole cells and commitment to form endoderm in Xenopus laevis. , 1987, Developmental biology.

[47]  R. Keller,et al.  Vital dye mapping of the gastrula and neurula of Xenopus laevis: I. Prospective areas and morphogenetic movements of the superficial layer , 1976 .

[48]  R. Keller,et al.  Vital Dye Mapping of the Gastrula and Neurula of Xenopus Laevis , 1975 .

[49]  R. Harland,et al.  Early development of Xenopus laevis : a laboratory manual , 2000 .

[50]  D. Melton,et al.  Vertebrate endoderm development. , 1999, Annual review of cell and developmental biology.

[51]  N. Rawlings,et al.  Evolutionary families of metallopeptidases. , 1995, Methods in enzymology.

[52]  Paul Woolley,et al.  Mechanisms in blood coagulation fibrinolysis and the complement system , 1991 .