An Analog of the 2-Wasserstein Metric in Non-Commutative Probability Under Which the Fermionic Fokker–Planck Equation is Gradient Flow for the Entropy

Let $${\mathfrak{C}}$$C denote the Clifford algebra over $${\mathbb{R}^n}$$Rn, which is the von Neumann algebra generated by n self-adjoint operators Qj, j = 1,…,n satisfying the canonical anticommutation relations, QiQj + QjQi =  2δijI, and let τ denote the normalized trace on $${\mathfrak{C}}$$C. This algebra arises in quantum mechanics as the algebra of observables generated by n fermionic degrees of freedom. Let $${\mathfrak{P}}$$P denote the set of all positive operators $${\rho\in\mathfrak{C}}$$ρ∈C such that τ(ρ) = 1; these are the non-commutative analogs of probability densities in the non-commutative probability space $${(\mathfrak{C},\tau)}$$(C,τ). The fermionic Fokker–Planck equation is a quantum-mechanical analog of the classical Fokker–Planck equation with which it has much in common, such as the same optimal hypercontractivity properties. In this paper we construct a Riemannian metric on $${\mathfrak{P}}$$P that we show to be a natural analog of the classical 2-Wasserstein metric, and we show that, in analogy with the classical case, the fermionic Fokker–Planck equation is gradient flow in this metric for the relative entropy with respect to the ground state. We derive a number of consequences of this, such as a sharp Talagrand inequality for this metric, and we prove a number of results pertaining to this metric. Several open problems are raised.

[1]  Irving Segal,et al.  A Non-Commutative Extension of Abstract Integration , 1953 .

[2]  I. Segal Tensor Algebras Over Hilbert Spaces. II , 1956 .

[3]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[4]  Irving Segal,et al.  Algebraic Integration Theory , 1965 .

[5]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[6]  L. Gross Existence and uniqueness of physical ground states , 1972 .

[7]  Edward Nelson The free Markoff field , 1973 .

[8]  Leonard Gross,et al.  Hypercontractivity and logarithmic Sobolev inequalities for the Clifford-Dirichlet form , 1975 .

[9]  E. Lieb,et al.  Phase transitions in quantum spin systems with isotropic and nonisotropic interactions , 1978 .

[10]  Eric Carlen,et al.  Optimal hypercontractivity for fermi fields and related non-commutative integration inequalities , 1992, hep-th/9209053.

[11]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[12]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[13]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[14]  D. Voiculescu,et al.  A free probability analogue of the Wasserstein metric on the trace-state space , 2000, math/0006044.

[15]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[16]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[17]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[18]  W. Gangbo,et al.  Constrained steepest descent in the 2-Wasserstein metric , 2003, math/0312063.

[19]  Axiom A maps are dense in the space of unimodal maps in the Ck topology , 2004, math/0401049.

[20]  C. Villani Topics in Optimal Transportation , 2003 .

[21]  Wilfrid Gangbo,et al.  Solution of a Model Boltzmann Equation via Steepest Descent in the 2-Wasserstein Metric , 2004 .

[22]  Felix Otto,et al.  Eulerian Calculus for the Contraction in the Wasserstein Distance , 2005, SIAM J. Math. Anal..

[23]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[24]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[25]  Karl-Theodor Sturm,et al.  Heat flow on Finsler manifolds , 2008, 0808.1166.

[26]  Sara Daneri,et al.  Eulerian Calculus for the Displacement Convexity in the Wasserstein Distance , 2008, SIAM J. Math. Anal..

[27]  E. Lieb,et al.  Brascamp--Lieb inequalities for non-commutative integration , 2008, Documenta Mathematica.

[28]  C. Villani Optimal Transport: Old and New , 2008 .

[29]  E. Carlen TRACE INEQUALITIES AND QUANTUM ENTROPY: An introductory course , 2009 .

[30]  Jinghai Shao,et al.  Wasserstein space over the Wiener space , 2010 .

[31]  Nicola Gigli,et al.  Heat Flow on Alexandrov Spaces , 2010, 1008.1319.

[32]  Matthias Erbar The heat equation on manifolds as a gradient flow in the Wasserstein space , 2010 .

[33]  Alexander Mielke,et al.  A gradient structure for reaction-diusion systems and for energy-drift-diu , 2011 .

[34]  J. Maas Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.

[35]  Alexander Mielke,et al.  A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems , 2011 .

[36]  S. Chow,et al.  Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph , 2012 .

[37]  J. Maas,et al.  Ricci Curvature of Finite Markov Chains via Convexity of the Entropy , 2011, 1111.2687.

[38]  A. Mielke Geodesic convexity of the relative entropy in reversible Markov chains , 2013 .

[39]  Nicola Gigli,et al.  Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.

[40]  H.,et al.  Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture , 2022 .