On synchronous coding

Novel synchronous coding schemes are introduced and relationships between optimal synchronous codes and Huffman codes are also discussed. Although the problem of existence of optimal synchronous codes has not been resolved yet, we show that any synchronous code can consider as an optimal synchronous code for some information source and that there always exist optimal synchronous codes for the information source with a dyadic probability distribution. Comparing with Huffman coding, the synchronous coding is used not only for statistical modeling but also for dictionary methods. Moreover, it is proven that breaking a synchronous code is NP-complete.

[1]  Kou-Hu Tzou High-order entropy coding for images , 1992, IEEE Trans. Circuits Syst. Video Technol..

[2]  Shmuel Tomi Klein,et al.  Storing text retrieval systems on CD-ROM: compression and encryption considerations , 1989, SIGIR '89.

[3]  Frank Rubin Cryptographic Aspects of Data Compression Codes , 1979, Cryptologia.

[4]  Shmuel Tomi Klein,et al.  Storing text retrieval systems on CD-ROM: compression and encryption considerations , 1989, TOIS.

[5]  Julia Abrahams,et al.  Synchronization of binary source codes , 1986, IEEE Trans. Inf. Theory.

[6]  Douglas W. Jones,et al.  Application of splay trees to data compression , 1988, CACM.

[7]  Ronald L. Rivest,et al.  On breaking a Huffman code , 1996, IEEE Trans. Inf. Theory.

[8]  Paul Douglas,et al.  Proceedings International Conference on Information Technology: Coding and Computing , 2002, Proceedings. International Conference on Information Technology: Coding and Computing.

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  Stephanie Perkins,et al.  Binary Huffman Equivalent Codes with a Short Synchronizing Codeword , 1998, IEEE Trans. Inf. Theory.

[11]  Luisa Gargano,et al.  On the characterization of statistically synchronizable variable-length codes , 1988, IEEE Trans. Inf. Theory.

[12]  Steven Roman Introduction to coding and information theory , 1997, Undergraduate texts in mathematics.

[13]  Jeffrey Scott Vitter,et al.  Design and analysis of dynamic Huffman codes , 1987, JACM.

[14]  Shawmin Lei,et al.  An entropy coding system for digital HDTV applications , 1991, IEEE Trans. Circuits Syst. Video Technol..

[15]  Ian H. Witten,et al.  Text Compression , 1990, 125 Problems in Text Algorithms.

[16]  Reza Hashemian Memory efficient and high-speed search Huffman coding , 1995, IEEE Trans. Commun..

[17]  Marcel Paul Schützenberger,et al.  On the Synchronizing Properties of Certain Prefix Codes , 1964, Inf. Control..

[18]  Vahid Tarokh,et al.  Existence of optimal prefix codes for infinite source alphabets , 1997, IEEE Trans. Inf. Theory.

[19]  Umberto Eco,et al.  Theory of Codes , 1976 .

[20]  Alfredo De Santis,et al.  On the construction of statistically synchronizable codes , 1992, IEEE Trans. Inf. Theory.

[21]  Alan L. Mackay,et al.  The Code Breakers , 1984 .

[22]  Mark R. Titchener The synchronization of variable-length codes , 1997, IEEE Trans. Inf. Theory.

[23]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[24]  Marcel Paul Schützenberger,et al.  On Synchronizing Prefix Codes , 1967, Inf. Control..

[25]  Thomas J. Ferguson,et al.  Self-synchronizing Huffman codes , 1984, IEEE Trans. Inf. Theory.

[26]  Gopal Lakhani,et al.  Improved Huffman code tables for JPEG's encoder , 1995, IEEE Trans. Circuits Syst. Video Technol..

[27]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[28]  Weijia Jia,et al.  Optimal maximal encoding different from Huffman encoding , 2001, Proceedings International Conference on Information Technology: Coding and Computing.