Maximum-likelihood reconstruction of completely positive maps

We present a method for the determination of the completely positive ~CP! map describing a physical device based on random preparation of the input states, random measurements at the output, and the maximumlikelihood principle. In the numerical implementation the constraint of completely positivity can be imposed by exploiting the isomorphism between linear transformations from Hilbert spaces H to K and linear operators in K^ H. The effectiveness of the method is shown on the basis of some examples of reconstruction of CP maps related to quantum communication channels for qubits.

[1]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[2]  G. D’Ariano,et al.  Bell measurements and observables , 2000, quant-ph/0005121.

[3]  Royer Reduced Dynamics with Initial Correlations, and Time-Dependent Environment and Hamiltonians. , 1996, Physical review letters.

[4]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[5]  G. D’Ariano,et al.  Parameter estimation in quantum optics , 2000, quant-ph/0004066.

[6]  Lane,et al.  Maximum-likelihood analysis of multiple quantum phase measurements. , 1992, Physical review letters.

[7]  Luis L. Sánchez-Soto,et al.  COMPLETE CHARACTERIZATION OF ARBITRARY QUANTUM MEASUREMENT PROCESSES , 1999 .

[8]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[9]  Reconstruction of Liouvillian superoperators , 1998, quant-ph/9806093.

[10]  M. Horodecki,et al.  Local environment can enhance fidelity of quantum teleportation , 1999, quant-ph/9912098.

[11]  E. B. Davies Quantum theory of open systems , 1976 .

[12]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[13]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[14]  Measuring Quantum Optical Hamiltonians , 1998, quant-ph/9805032.

[15]  J. Pillis Linear transformations which preserve hermitian and positive semidefinite operators. , 1967 .

[16]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[17]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[18]  J. Cirac,et al.  Entangling operations and their implementation using a small amount of entanglement. , 2000, Physical review letters.