Ab initio helium NMR chemical shifts of endohedral fullerene compounds He@Cn (n = 32−180)

Helium NMR chemical shifts have been computed at the gauge including atomic orbitals (GIAO)-SCF/dz(C), tzp(He)//MNDO level for the endohedral fullerene compounds He@Cn (n = 32, 36, 50, 60, 70, 76, 78, 80, 82, 120, 180). The endohedral He shielding increases in the sequence C60 < C84 < C82 < C78 < C76 < C70, in accord with recent London calculations. For the smaller fullerenes (n < 60), large endohedral shieldings are computed, e.g. δ(He) = −30.3 ppm for He@C50 (D5h), while a nearly constant endohedral chemical shift of ≈ −17 ppm is predicted for the symmetric large fullerenes C120 and C180.

[1]  M. Jarrold,et al.  Annealing Carbon Cluster Ions: A Mechanism for Fullerene Synthesis , 1994 .

[2]  M. Saunders,et al.  Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70 , 1994, Nature.

[3]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[4]  Hans W. Horn,et al.  Direct computation of second-order SCF properties of large molecules on workstation computers with an application to large carbon clusters , 1992 .

[5]  M. Schindler,et al.  Ab initio calculation of magnetic properties by the “direct” IGLO method , 1992 .

[6]  A. Soper,et al.  Molecular structure of the C70 fullerene , 1994 .

[7]  J. Cioslowski Endohedral Magnetic Shielding in the C60 Cluster , 1994 .

[8]  M. Grätzel,et al.  Effects of spatial confinement on the rate of bimolecular reactions in organized liquid media , 1989 .

[9]  P. Schleyer,et al.  Helium and Lithium NMR Chemical Shifts of Endohedral Fullerene Compounds: An ab Initio Study , 1994 .

[10]  Walter Thiel,et al.  MNDO Study of Large Carbon Clusters , 1991 .

[11]  J. Perdew,et al.  Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas , 1986, Physical review. B, Condensed matter.

[12]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[13]  H. Kroto,et al.  Space, Stars, C60, and Soot , 1988, Science.

[14]  Isao Ikemoto,et al.  NMR characterization of isomers of C78, C82 and C84 fullerenes , 1992, Nature.

[15]  Walter Thiel,et al.  Quantum-chemical study of C84 fullerene isomers , 1992 .

[16]  R. Whetten,et al.  Fullerene Isomerism: Isolation of C2v,-C78 and D3-C78 , 1991, Science.

[17]  J. Cioslowski Endohedral magnetic shielding in fullerenes. A GIAO CPHF study , 1994 .

[18]  R. Smalley,et al.  UPS of 2–30-atom carbon clusters: Chains and rings , 1988 .

[19]  R. C. Haddon,et al.  Icosahedral C60: an aromatic molecule with a vanishingly small ring current magnetic susceptibility , 1987, Nature.

[20]  R. Whetten,et al.  Isolation of C76, a chiral (D 2) allotrope of carbon , 1991, Nature.

[21]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[22]  Paolo Lazzeretti,et al.  IGLO STUDY OF BENZENE AND SOME OF ITS ISOMERS AND RELATED MOLECULES. SEARCH FOR EVIDENCE OF THE RING CURRENT MODEL , 1994 .

[23]  Alfredo Pasquarello,et al.  Ring Currents in Icosahedral C60 , 1992, Science.