A branch-and-Benders-cut algorithm for a bi-objective stochastic facility location problem

In many real-world optimization problems, more than one objective plays a role and input parameters are subject to uncertainty. In this paper, motivated by applications in disaster relief and public facility location, we model and solve a bi-objective stochastic facility location problem. The considered objectives are cost and uncovered demand, whereas the demand at the different population centers is uncertain but its probability distribution is known. The latter information is used to produce a set of scenarios. In order to solve the underlying optimization problem, we apply a Benders' type decomposition approach which is known as the L-shaped method for stochastic programming and we embed it into a recently developed branch-and-bound framework for bi-objective integer optimization. We analyze and compare different cut generation schemes and we show how they affect lower bound set computations, so as to identify the best performing approach. Finally, we compare the branch-and-Benders-cut approach to a straight-forward branch-and-bound implementation based on the deterministic equivalent formulation.

[1]  Luk N. Van Wassenhove,et al.  From preparedness to partnerships: case study research on humanitarian logistics , 2009, Int. Trans. Oper. Res..

[2]  Walter J. Gutjahr,et al.  Multicriteria optimization in humanitarian aid , 2016, Eur. J. Oper. Res..

[3]  Thomas R. Stidsen,et al.  A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs , 2014, Manag. Sci..

[4]  Matthias Ehrgott,et al.  Bound sets for biobjective combinatorial optimization problems , 2007, Comput. Oper. Res..

[5]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[6]  Richard F. Hartl,et al.  A Bi-objective Metaheuristic for Disaster Relief Operation Planning , 2010, Advances in Multi-Objective Nature Inspired Computing.

[7]  M. Conceição Fonseca,et al.  A stochastic bi-objective location model for strategic reverse logistics , 2010 .

[8]  Michel Gendreau,et al.  Bi-objective stochastic programming models for determining depot locations in disaster relief operations , 2016, Int. Trans. Oper. Res..

[9]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[10]  Walter J. Gutjahr,et al.  The bi-objective stochastic covering tour problem , 2012, Comput. Oper. Res..

[11]  Walter J. Gutjahr,et al.  Stochastic multi-objective optimization: a survey on non-scalarizing methods , 2016, Ann. Oper. Res..

[12]  Rafael Caballero,et al.  Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems , 2002, Eur. J. Oper. Res..

[13]  Walter J. Gutjahr,et al.  Bi-objective bilevel optimization of distribution center locations considering user equilibria , 2016 .

[14]  Jean-François Cordeau,et al.  Benders Decomposition for Production Routing Under Demand Uncertainty , 2012, Oper. Res..

[15]  Fouad Ben Abdelaziz,et al.  Solution approaches for the multiobjective stochastic programming , 2012, Eur. J. Oper. Res..

[16]  Teodor Gabriel Crainic,et al.  Partial Benders Decomposition Strategies for Two-Stage Stochastic Integer Programs , 2016 .

[17]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[18]  Ada Alvarez,et al.  A bi-objective supply chain design problem with uncertainty , 2011 .

[19]  Nasrin Asgari,et al.  Multiple criteria facility location problems: A survey , 2010 .

[20]  Nilay Noyan,et al.  A chance-constrained two-stage stochastic programming model for humanitarian relief network design , 2018 .

[21]  Kathrin Fischer,et al.  Two-stage stochastic programming in disaster management: A literature survey , 2016 .

[22]  Sophie N. Parragh,et al.  Branch-and-bound for bi-objective integer programming , 2018, INFORMS J. Comput..

[23]  J. Current,et al.  The median tour and maximal covering tour problems: Formulations and heuristics , 1994 .

[24]  M. Khorsi,et al.  A Nonlinear Dynamic Logistics Model for Disaster Response under Uncertainty , 2013 .

[25]  Richard L. Church,et al.  The maximal covering location problem , 1974 .

[26]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[27]  S I Harewood,et al.  Emergency ambulance deployment in Barbados: a multi-objective approach , 2002, J. Oper. Res. Soc..

[28]  Mark A. Turnquist,et al.  Multiobjective transportation considerations in multiple facility location , 1990 .

[29]  Thomas L. Magnanti,et al.  Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria , 1981, Oper. Res..

[30]  Zvi Drezner,et al.  Facility location - applications and theory , 2001 .

[31]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[32]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[33]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[34]  Karl F. Doerner,et al.  Multicriteria tour planning for mobile healthcare facilities in a developing country , 2007, Eur. J. Oper. Res..

[35]  Andrés L. Medaglia,et al.  Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example , 2006, Ann. Oper. Res..

[36]  Nicolas Jozefowiez,et al.  The bi-objective covering tour problem , 2007, Comput. Oper. Res..