Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion

The thermoelectric modules of π-shaped 1-, 2-, and 4-pairs are constructed using p-type Ca2.76Cu0.24Co4O9 and n-type Ca0.8Dy0.2MnO3 oxide materials. The reacted phases at the interfaces of the Ca2.76Cu0.24Co4O9/Ag electrode and Ca0.8Dy0.2MnO3/Ag electrode are not observed. The output powers of the fabricated π-shaped modules are measured, depending on the operating parameters and number of thermoelectric module pairs. The output powers of single thermoelectric modules increase with an increase in temperature difference ΔT between the hot- and cold-side temperatures of the modules, i.e., 2.42, 3.65, 4.26, 5.70, 7.13, and 8.42 mW for ΔT = 250, 269, 293, 305, 324, and 346 °C, respectively. The maximum output powers of 1-, 2-, and 4-pair thermoelectric modules are roughly proportional to the number of p-n pairs. Oxide-based thermoelectric devices can be considered useful tools for green energy generation.

[1]  Chin-Hsiang Cheng,et al.  Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications , 2011 .

[2]  Theodore J. Reinhart,et al.  Engineered materials handbook , 1987 .

[3]  Peng Li,et al.  Thermal design and management for performance optimization of solar thermoelectric generator , 2012 .

[4]  R. Funahashi,et al.  Ca2.7Bi0.3Co4O9∕La0.9Bi0.1NiO3 thermoelectric deviceswith high output power density , 2004 .

[5]  Xiaolong Gou,et al.  A dynamic model for thermoelectric generator applied in waste heat recovery , 2013 .

[6]  A. Christou,et al.  Diffusion controlled degradation analysis of high temperature (Bi,Sb)2(Te,Se)3 semiconductor thermoelectric power modules , 1995 .

[7]  David Michael Rowe,et al.  Applications of nuclear-powered thermoelectric generators in space , 1991 .

[8]  Bekir Sami Yilbas,et al.  Investigation into topping cycle: Thermal efficiency with and without presence of thermoelectric gen , 2011 .

[9]  J. W. Choi,et al.  Characteristics of thermoelectric power modules based on p-type Na(Co0.95Ni0.05)2O4 and n-type Zn0.99Sn0.01O , 2009 .

[10]  Gao Min,et al.  Evaluation of thermoelectric modules for power generation , 1998 .

[11]  Ka-Young Park,et al.  Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation , 2013 .

[12]  Bekir Sami Yilbas,et al.  Thermoelectric device and optimum external load parameter and slenderness ratio , 2010 .

[13]  Kyeongsoon Park,et al.  Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process , 2011, Nanoscale research letters.

[14]  Wei-Hsin Chen,et al.  Experimental study on thermoelectric modules for power generation at various operating conditions , 2012 .

[15]  Yoshiaki Yamamoto,et al.  Development of film-shaped thermoelectric materials for thermoelectric modules , 1998 .

[16]  Christophe Goupil,et al.  Thermoelectric ceramics for generators , 2008 .

[17]  M. Rivaletto,et al.  Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove , 2011 .

[18]  Mansoor Barati,et al.  Energy recovery from high temperature slags , 2011 .

[19]  A. Lanin,et al.  Influence of residual stresses on thermal stress resistance of refractory ceramic , 2000 .

[20]  Kyeongsoon Park,et al.  Electrical conductivity and thermoelectric power studies of solution-combustion-processed Ca2.76Cu0.24Co4O9 , 2013 .

[21]  M. Kosec,et al.  Linear thermal expansion coefficients of relaxor-ferroelectric 0.57Pb(Sc1/2Nb1/2)O3–0.43PbTiO3 ceramics in a wide temperature range , 2013 .

[22]  Bihong Lin,et al.  Performance analysis and parametric optimal design of an irreversible multi-couple thermoelectric refrigerator under various operating conditions , 2007 .

[23]  Wei-Hsin Chen,et al.  Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization , 2012 .

[24]  Cheng-Ting Hsu,et al.  An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module , 2011 .

[25]  Bekir Sami Yilbas,et al.  Thermodynamic irreversibility and performance characteristics of thermoelectric power generator , 2013 .

[26]  Jianlin Yu,et al.  A numerical model for thermoelectric generator with the parallel-plate heat exchanger , 2007 .

[27]  Sun Feng-rui,et al.  A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibi , 2011 .

[28]  Shanyu Wang,et al.  Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs , 2011 .

[29]  Koichiro Ikeda,et al.  Thermoelectric power generation using Li-doped NiO and (Ba, Sr)PbO3 module , 2001 .

[30]  Jiin-Yuh Jang,et al.  A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink , 2013 .