Necessary Conditions for the Generic Global Rigidity of Frameworks on Surfaces

A result due in its various parts to Hendrickson, Connelly, and Jackson and Jordán, provides a purely combinatorial characterisation of global rigidity for generic bar-joint frameworks in $${{\mathbb {R}}}^2$$R2. The analogous conditions are known to be insufficient to characterise generic global rigidity in higher dimensions. Recently Laman-type characterisations of rigidity have been obtained for generic frameworks in $${\mathbb {R}}^3$$R3 when the vertices are constrained to lie on various surfaces, such as the cylinder and the cone. In this paper we obtain analogues of Hendrickson’s necessary conditions for the global rigidity of generic frameworks on the cylinder, cone and ellipsoid.

[1]  Bill Jackson,et al.  Stress Matrices and Global Rigidity of Frameworks on Surfaces , 2014, Discret. Comput. Geom..

[2]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Connected Rigidity Matroids and Unique Realizations of Graphs Connected Rigidity Matroids and Unique Realizations of Graphs , 2022 .

[3]  Brian D. O. Anderson,et al.  Graphical properties of easily localizable sensor networks , 2009, Wirel. Networks.

[4]  Antonio Franchi,et al.  Rigidity Maintenance Control for Multi-Robot Systems , 2012, Robotics: Science and Systems.

[5]  Anthony Nixon,et al.  A Characterization of Generically Rigid Frameworks on Surfaces of Revolution , 2012, SIAM J. Discret. Math..

[6]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[7]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[8]  Robert Connelly,et al.  Generic Global Rigidity , 2005, Discret. Comput. Geom..

[9]  Anthony Nixon,et al.  A LAMAN THEOREM FOR FRAMEWORKS ON SURFACES OF REVOLUTION , 2013 .

[10]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[11]  Bill Jackson,et al.  Necessary Conditions for the Global Rigidity of Direction–Length Frameworks , 2011, Discret. Comput. Geom..

[12]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[13]  Robert Connelly,et al.  Global Rigidity: The Effect of Coning , 2010, Discret. Comput. Geom..

[14]  Audrey Lee-St. John,et al.  Pebble game algorithms and sparse graphs , 2007, Discret. Math..

[15]  Anthony Nixon,et al.  Rigidity of Frameworks Supported on Surfaces , 2010, SIAM J. Discret. Math..

[16]  Anthony Nixon,et al.  A constructive characterisation of circuits in the simple (2,1)‐sparse matroid , 2012, Eur. J. Comb..

[17]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[18]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[19]  Tibor Jordán,et al.  Algorithms for Graph Rigidity and Scene Analysis , 2003, ESA.

[20]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[21]  T. Willmore Algebraic Geometry , 1973, Nature.