An Experimental Study of Pool Fires and Validation of Different CFD Fire Models

.................................................................................................................................................. V NOMENCLATURE ...................................................................................................................................... VII GREEK LETTERS .......................................................................................................................................... IX SUBSCRIPTS ............................................................................................................................................... IX SUPERSCRIPTS ........................................................................................................................................... IX TABLE OF CONTENT ................................................................................................................................... XI DEFINITIONS AND WORD EXPLANATIONS ............................................................................................... XIII

[1]  Eulàlia Planas,et al.  Analysis of the geometric and radiative characteristics of hydrocarbon pool-fires , 2004 .

[2]  Karim Van Maele,et al.  Application of two buoyancy-modified k–ε turbulence models to different types of buoyant plumes , 2006 .

[3]  J. Karwatzki,et al.  Validation of FDS for the prediction of medium-scale pool fires , 2007 .

[4]  Eulàlia Planas,et al.  Experimental study of burning rate in hydrocarbon pool fires , 2001 .

[5]  Guillermo Rein,et al.  Experimental data and numerical modelling of 1.3 and 2.3 MW fires in a 20 m cubic atrium , 2009 .

[6]  Louis A. Gritzo,et al.  Thermal Measurements from a Series of Tests with a Large Cylindrical Calorimeter on the Leeward Edge of a JP-8 Pool Fire in Cross-Flow , 2001 .

[7]  Miles Greiner,et al.  Validation of the Isis-3D Computer Code for Simulating Large Pool Fires Under a Variety of Wind Conditions , 2004 .

[8]  D. Drysdale An Introduction to Fire Dynamics , 2011 .

[9]  James G. Quintiere,et al.  Flow induced by fire in a compartment , 1982 .

[10]  Joaquim Casal,et al.  Protection of equipment engulfed in a pool fire , 1996 .

[11]  Takashi Kashiwagi,et al.  Estimate of flame radiance via a single location measurement in liquid pool fires , 1991 .

[12]  Rajiv Kumar,et al.  Simulation of an experimental compartment fire by CFD , 2007 .

[13]  Daniel A. Crowl,et al.  Chemical Process Safety , 1990 .

[14]  Samuel J. Collins UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION OFFICE OF NUCLEAR REACTOR REGULATION , 1997 .

[15]  Anthony P. Hamins,et al.  Determination of Planck Mean Absorption Coefficients for Hydrocarbon Fuels , 2008 .

[16]  Anders Lönnermark,et al.  Smoke Spread and Gas Temperatures during Fires in Retail Premises - Experiments and CFD Simulations , 2008 .

[17]  Joaquim Casal,et al.  Flame temperature distribution in a pool-fire , 1998 .

[18]  Archibald Tewarson,et al.  Combustion efficiency and its radiative component , 2004 .

[19]  Anders Lönnermark,et al.  Uncertainties in measuring heat and smoke release rates in the room/corner test and the SBI , 2001 .

[20]  Prankul Middha,et al.  MODELLING OF HYDROGEN JET FIRES USING CFD , 2011 .

[21]  Margaret Harkleroad,et al.  Combustion efficiency, radiation, co and soot yield from a variety of gaseous, liquid, and solid fueled buoyant diffusion flames , 1989 .

[22]  G. Mulholland,et al.  The effect of diameter on the burning of crude oil pool fires , 1991 .

[23]  E. Planas,et al.  Predicting the emissive power of hydrocarbon pool fires. , 2007, Journal of hazardous materials.

[24]  Elizabeth J. Weckman,et al.  Experimental investigation of the turbulence structure of medium-scale methanol pool fires , 1996 .

[25]  Robert W. Dibble,et al.  Combustion: Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation , 1996 .