New forms of old drugs: improving without changing

In a short approach, we want to present the improvements that have recently been done in the world of new solid forms of known active pharmaceutical ingredients (APIs). The different strategies will be addressed, and successful examples will be given.

[1]  A. Matzger,et al.  Polymorphism of Nabumetone , 2002 .

[2]  W. Schlindwein,et al.  Pharmaceutical cocrystals: an overview. , 2011, International journal of pharmaceutics.

[3]  C. Janiak,et al.  MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs) , 2010 .

[4]  Z. Su,et al.  Metal-organic frameworks as potential drug delivery systems , 2013, Expert opinion on drug delivery.

[5]  William Jones,et al.  Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol , 2009 .

[6]  Julia L. Shamshina,et al.  Ionic liquids in drug delivery , 2013, Expert opinion on drug delivery.

[7]  I.M. Marrucho,et al.  Ionic liquids in pharmaceutical applications. , 2014, Annual review of chemical and biomolecular engineering.

[8]  H. Höpfl,et al.  A Twist in Cocrystals of Salts: Changes in Packing and Chloride Coordination Lead to Opposite Trends in the Biopharmaceutical Performance of Fluoroquinolone Hydrochloride Cocrystals , 2014 .

[9]  T. Friščić,et al.  Cocrystal architecture and properties: design and building of chiral and racemic structures by solid-solid reactions. , 2007, Faraday discussions.

[10]  J. Autret,et al.  Crystallization of eflucimibe drug in a solvent mixture: Effects of process conditions on polymorphism , 2004 .

[11]  Demin Liu,et al.  Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. , 2011, Accounts of chemical research.

[12]  R. Holm,et al.  Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. , 2013, International journal of pharmaceutics.

[13]  Naír Rodríguez-Hornedo,et al.  Solubility Advantage of Pharmaceutical Cocrystals , 2009 .

[14]  Miranda L. Cheney,et al.  Effects of Crystal Form on Solubility and Pharmacokinetics: A Crystal Engineering Case Study of Lamotrigine , 2010 .

[15]  Joel Bernstein,et al.  Polymorphism in Molecular Crystals , 2002 .

[16]  I. S. Terekhova,et al.  Supramolecular chemistry and crystal engineering , 2005 .

[17]  T. Friščić,et al.  High reactivity of metal-organic frameworks under grinding conditions: parallels with organic molecular materials. , 2010, Angewandte Chemie.

[18]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[19]  James Mack,et al.  Mechanochemistry: opportunities for new and cleaner synthesis. , 2012, Chemical Society reviews.

[20]  G. P. Stahly Diversity in Single- and Multiple-Component Crystals. The Search for and Prevalence of Polymorphs and Cocrystals , 2007 .

[21]  Robin D. Rogers,et al.  The third evolution of ionic liquids: active pharmaceutical ingredients , 2007 .

[22]  J. Boetker,et al.  Indomethacin: new polymorphs of an old drug. , 2013, Molecular pharmaceutics.

[23]  Niklas Sandler,et al.  Pharmaceutical co-crystals-an opportunity for drug product enhancement. , 2009, Expert opinion on drug delivery.

[24]  Kumar Biradha,et al.  Recent Developments in Crystal Engineering , 2011 .

[25]  Miranda L. Cheney,et al.  Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. , 2012, Molecular pharmaceutics.

[26]  Martin Müller,et al.  Process Development Strategy to Ascertain Reproducible API Polymorph Manufacture , 2006 .

[27]  Solvent influences on metastable polymorph lifetimes: real-time interconversions using energy dispersive X-ray diffractometry. , 2007, Journal of pharmaceutical sciences.

[28]  Ning Shan,et al.  The role of cocrystals in pharmaceutical science. , 2008, Drug discovery today.

[29]  William Jones,et al.  Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement , 2006 .

[30]  D. Braga,et al.  Combining piracetam and lithium salts: ionic co-crystals and co-drugs? , 2012, Chemical communications.

[31]  D. Braga,et al.  Mechanochemical preparation of co-crystals. , 2013, Chemical Society reviews.

[32]  D. Braga,et al.  Novel pharmaceutical compositions through co-crystallization of racetams and Li+ salts , 2013 .

[33]  Jonathan W Steed,et al.  The role of co-crystals in pharmaceutical design. , 2013, Trends in pharmacological sciences.

[34]  M. O'Keeffe Design of MOFs and intellectual content in reticular chemistry: a personal view. , 2009, Chemical Society reviews.

[35]  Jonghwi Lee,et al.  Novel polymorphic form of adefovir dipivoxil derived from polymer-directed crystallization. , 2011, Die Pharmazie.

[36]  D. Braga,et al.  Molecular Salts of Anesthetic Lidocaine with Dicarboxylic Acids: Solid-State Properties and a Combined Structural and Spectroscopic Study , 2013 .

[37]  D. Braga,et al.  Reactions between or within molecular crystals. , 2004, Angewandte Chemie.

[38]  G. Deacon,et al.  Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate. , 2006, Angewandte Chemie.

[39]  S. Gómez‐Ruiz,et al.  Metals in Medicine , 2012, Bioinorganic chemistry and applications.

[40]  D. Giron Characterisation of salts of drug substances , 2003 .

[41]  Jack D. Dunitz,et al.  Phase transitions in molecular crystals from a chemical viewpoint , 1991 .

[42]  Claus Cornett,et al.  Solvent diversity in polymorph screening. , 2008, Journal of pharmaceutical sciences.

[43]  J E A N-M A R I E L E H N,et al.  SUPRAMOLECULAR CHEMISTRY - SCOPE AND PERSPECTIVES MOLECULES - SUPERMOLECULES - MOLECULAR DEVICES , 2022 .

[44]  Lucia Maini,et al.  The growing world of crystal forms. , 2010, Chemical communications.

[45]  J. Bauer,et al.  Ritonavir: An Extraordinary Example of Conformational Polymorphism , 2001, Pharmaceutical Research.

[46]  Jeanette T. Dunlap,et al.  Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. , 2004, Journal of the American Chemical Society.

[47]  J. Greneche,et al.  Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. , 2008, Chemical communications.

[48]  J. Araújo,et al.  Evaluation of solubility and partition properties of ampicillin-based ionic liquids. , 2013, International journal of pharmaceutics.

[49]  C. Serre,et al.  Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation. , 2008, Journal of the American Chemical Society.

[50]  T. Friščić,et al.  Screening for inclusion compounds and systematic construction of three-component solids by liquid-assisted grinding. , 2006, Angewandte Chemie.

[51]  Gérard Férey,et al.  Metal-organic frameworks as efficient materials for drug delivery. , 2006, Angewandte Chemie.

[52]  Jianwen Jiang,et al.  Unraveling the Energetics and Dynamics of Ibuprofen in Mesoporous Metal−Organic Frameworks , 2009 .

[53]  Making Crystals from Crystals: A Solid-State Route to the Engineering of Crystalline Materials, Polymorphs, Solvates and Co-Crystals; Considerations on the Future of Crystal Engineering , 2008 .

[54]  T. Threlfall Analysis of organic polymorphs. A review , 1995 .

[55]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[56]  Tomohiro Sato,et al.  Varied charge-transfer complex crystals formed between diols and benzoquinone in the solid and solution states , 2008 .

[57]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[58]  V. Muzykantov Drug delivery carriers on the fringes: natural red blood cells versus synthetic multilayered capsules , 2013, Expert opinion on drug delivery.

[59]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[60]  K. Terada,et al.  Cocrystal Screening of Stanolone and Mestanolone Using Slurry Crystallization , 2008 .

[61]  Gautam R. Desiraju,et al.  Crystal engineering: A brief overview , 2010 .

[62]  Y. Azim,et al.  Pharmaceutical Co-Crystals: A New Paradigm of Crystal Engineering , 2014 .

[63]  Orn Almarsson,et al.  Performance comparison of a co-crystal of carbamazepine with marketed product. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[64]  Nathaniel L Rosi,et al.  Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. , 2009, Journal of the American Chemical Society.

[65]  B. Moulton,et al.  Supramolecular medicinal chemistry: mixed-ligand coordination complexes. , 2007, Molecular pharmaceutics.

[66]  Lucia Maini,et al.  From unexpected reactions to a new family of ionic co-crystals: the case of barbituric acid with alkali bromides and caesium iodide. , 2010, Chemical communications.

[67]  Michael J Zaworotko,et al.  2:1 cocrystals of homochiral and achiral amino acid zwitterions with Li+ salts: water-stable zeolitic and diamondoid metal-organic materials. , 2011, Journal of the American Chemical Society.

[68]  N. Rodríguez-Hornedo,et al.  Pharmaceutical cocrystals and poorly soluble drugs. , 2013, International journal of pharmaceutics.

[69]  T. Friščić,et al.  Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. , 2007, Molecular pharmaceutics.

[70]  L. Wojtas,et al.  Improving Lithium Therapeutics by Crystal Engineering of Novel Ionic Cocrystals , 2013, Molecular pharmaceutics.

[71]  Hongzhe Sun,et al.  Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. , 2007, Accounts of chemical research.

[72]  R. Hart,et al.  The role of short-range diffusion in solvent-assisted mechanochemical synthesis of metal complexes. , 2008, Dalton transactions.

[73]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[74]  T. Friščić,et al.  Mechanosynthesis of the metallodrug bismuth subsalicylate from Bi2O3 and structure of bismuth salicylate without auxiliary organic ligands. , 2011, Angewandte Chemie.

[75]  Gautam R. Desiraju,et al.  Crystal engineering : the design of organic solids , 1989 .

[76]  T. Friščić,et al.  Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. , 2010, Angewandte Chemie.

[77]  A. Matzger,et al.  Polymorphism in Carbamazepine Cocrystals. , 2008, Crystal growth & design.

[78]  T. Friščić New opportunities for materials synthesis using mechanochemistry , 2010 .

[79]  S. Kumar Pharmaceutical Cocrystals: An Overview , 2017 .

[80]  Peddy Vishweshwar,et al.  Pharmaceutical co-crystals. , 2006, Journal of pharmaceutical sciences.

[81]  D. Braga,et al.  Ionic Co-crystals of Organic Molecules with Metal Halides: A New Prospect in the Solid Formulation of Active Pharmaceutical Ingredients , 2011 .

[82]  D. Braga,et al.  Drug-containing coordination and hydrogen bonding networks obtained mechanochemically , 2009 .

[83]  Naír Rodríguez-Hornedo,et al.  Mechanisms by which moisture generates cocrystals. , 2007, Molecular pharmaceutics.

[84]  Wolfgang Beckmann,et al.  Seeding the Desired Polymorph: Background, Possibilities, Limitations, and Case Studies , 2000 .

[85]  J. McMahon,et al.  Crystal engineering of the composition of pharmaceutical phases. , 2003, Chemical communications.

[86]  William Jones,et al.  Solvent-drop grinding: green polymorph control of cocrystallisation. , 2004, Chemical communications.

[87]  J. Bernstein Polymorphism − A Perspective , 2011 .

[88]  L. Fábián,et al.  Exploring cocrystal-cocrystal reactivity via liquid-assisted grinding: the assembling of racemic and dismantling of enantiomeric cocrystals. , 2006, Chemical communications.

[89]  Tejender S. Thakur,et al.  Co-Crystals of the Anti-HIV Drugs Lamivudine and Zidovudine , 2009 .

[90]  P. Matousek,et al.  Characterization of New Cocrystals by Raman Spectroscopy, Powder X-ray Diffraction, Differential Scanning Calorimetry, and Transmission Raman Spectroscopy , 2010 .

[91]  L. Cunha-Silva,et al.  Gabapentin Coordination Networks: Mechanochemical Synthesis and Behavior under Shelf Conditions , 2013 .

[92]  J. Araújo,et al.  Development of novel ionic liquids based on ampicillin , 2012 .

[93]  Sukmadjaja Asyarie,et al.  The Antibiotic Potency of Amoxicillin-Clavulanate Co-Crystal , 2007 .

[94]  J. Bernstein,et al.  Cocrystal design gone awry? A new dimorphic hydrate of oxalic acid. , 2007, Molecular pharmaceutics.

[95]  F. Bounoure,et al.  Improvement in the water solubility and stability of 4ASA by the use of cyclodextrins , 2011 .

[96]  Changquan Calvin Sun,et al.  Simultaneously Improving the Mechanical Properties, Dissolution Performance, and Hygroscopicity of Ibuprofen and Flurbiprofen by Cocrystallization with Nicotinamide , 2012, Pharmaceutical Research.

[97]  R. Tan,et al.  Screening for cocrystallization tendency: the role of intermolecular interactions. , 2008, The journal of physical chemistry. B.

[98]  Gérard Férey,et al.  BioMOFs: metal-organic frameworks for biological and medical applications. , 2010, Angewandte Chemie.

[99]  Naír Rodríguez-Hornedo,et al.  Understanding and Predicting the Effect of Cocrystal Components and pH on Cocrystal Solubility , 2009 .

[100]  Orn Almarsson,et al.  Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? , 2003, Chemical communications.

[101]  N. Rodríguez-Hornedo,et al.  Tailoring aqueous solubility of a highly soluble compound via cocrystallization: effect of coformer ionization, pHmax and solute–solvent interactions , 2012 .

[102]  Woo-Sik Kim,et al.  Antisolvent Crystallization Using Ionic Liquids As Solvent and Antisolvent for Polymorphic Design of Active Pharmaceutical Ingredient , 2013 .

[103]  Christer B Aakeröy,et al.  Cocrystal or salt: does it really matter? , 2007, Molecular pharmaceutics.

[104]  Richard Blom,et al.  Base‐Induced Formation of Two Magnesium Metal‐Organic Framework Compounds with a Bifunctional Tetratopic Ligand , 2008 .

[105]  Gargi Mukherjee,et al.  Polymorphs, Salts, and Cocrystals: What’s in a Name? , 2012 .

[106]  A. Nangia,et al.  Polymorphs and Cocrystals of Nalidixic Acid , 2012 .

[107]  Piotr H. Karpinski,et al.  Polymorphism of Active Pharmaceutical Ingredients , 2006 .

[108]  Christian Serre,et al.  Biodegradable therapeutic MOFs for the delivery of bioactive molecules. , 2010, Chemical communications.

[109]  Gerhard M. J. Schmidt,et al.  Photodimerization in the solid state , 1971 .

[110]  K. Tanaka,et al.  Solvent-free organic synthesis. , 2000, Chemical reviews.

[111]  Jihyun An,et al.  Metal-biomolecule frameworks (MBioFs). , 2011, Chemical communications.

[112]  W. Jones,et al.  Screening for crystalline salts via mechanochemistry. , 2006, Chemical communications.

[113]  J. Lehn,et al.  Helicates: Tetra‐ and Pentanuclear Double Helix Complexes of CuI and Poly(bipyridine) Strands , 1988 .

[114]  Aeri Park,et al.  The salt-cocrystal continuum: the influence of crystal structure on ionization state. , 2007, Molecular pharmaceutics.

[115]  Fiona C. Strobridge,et al.  A rational approach to screen for hydrated forms of the pharmaceutical derivative magnesium naproxen using liquid-assisted grinding , 2011 .

[116]  N. Rodríguez-Hornedo,et al.  Cocrystals and Salts of Gabapentin: pH Dependent Cocrystal Stability and Solubility , 2009 .

[117]  H. Brittain Polymorphism in Pharmaceutical Solids , 1999 .

[118]  Gautam R Desiraju,et al.  Crystal engineering: a holistic view. , 2007, Angewandte Chemie.

[119]  C. Kontoyannis,et al.  Analysis and stability of polymorphs in tablets: The case of Risperidone. , 2007, Talanta.

[120]  H. Khavasi,et al.  Anion-controlled structural motif in one-dimensional coordination networks via cooperative weak noncovalent interactions , 2012 .

[121]  R. Schartman On the thermodynamics of cocrystal formation. , 2009, International journal of pharmaceutics.

[122]  Seda Keskin,et al.  Biomedical Applications of Metal Organic Frameworks , 2011 .

[123]  William Jones,et al.  Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration , 2005 .

[124]  N. Fotaki,et al.  Pharmaceutical characterisation and evaluation of cocrystals: Importance of in vitro dissolution conditions and type of coformer. , 2013, International journal of pharmaceutics.

[125]  D. Braga,et al.  Simple and quantitative mechanochemical preparation of a porous crystalline material based on a 1D coordination network for uptake of small molecules. , 2005, Angewandte Chemie.

[126]  Woo-Sik Kim,et al.  Application of Ionic Liquid to Polymorphic Design of Pharmaceutical Ingredients , 2010 .

[127]  K. Moribe,et al.  Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation. , 2008, Advanced drug delivery reviews.

[128]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[129]  T. Friščić,et al.  Engineering cocrystal and polymorph architecture via pseudoseeding. , 2009, Chemical communications.

[130]  Gérard Férey,et al.  Flexible porous metal-organic frameworks for a controlled drug delivery. , 2008, Journal of the American Chemical Society.

[131]  A. Fernandes,et al.  On the Track of New Multicomponent Gabapentin Crystal Forms: Synthon Competition and pH Stability , 2011 .

[132]  D. Braga,et al.  Ionic co-crystals of racetams: solid-state properties enhancement of neutral active pharmaceutical ingredients via addition of Mg2+ and Ca2+ chlorides , 2014 .

[133]  D. Braga,et al.  Simple and quantitative mechanochemical preparation of the first zinc and copper complexes of the neuroleptic drug gabapentin , 2008 .

[134]  Abu T M Serajuddin,et al.  Trends in solubility of polymorphs. , 2005, Journal of pharmaceutical sciences.

[135]  Ron J Roberts,et al.  Structure, solubility, screening, and synthesis of molecular salts. , 2007, Journal of pharmaceutical sciences.

[136]  V. André,et al.  Transforming aspirin into novel molecular salts of salicylic acid , 2014, Structural Chemistry.

[137]  Amy J. Cairns,et al.  Cocrystal controlled solid-state synthesis of a rigid tetracarboxylate ligand that pillars both square grid and Kagomé lattice layers , 2011 .

[138]  M. R. Silva,et al.  Pyrazinamide-Diflunisal: A New Dual-Drug Co-Crystal , 2011 .

[139]  Abu T M Serajuddin,et al.  Salt formation to improve drug solubility. , 2007, Advanced drug delivery reviews.

[140]  A. Nangia,et al.  High Solubility Crystalline Pharmaceutical Forms of Blonanserin , 2014 .

[141]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[142]  J. Bernstein,et al.  An Alternate Crystal Form of Gabapentin: A Cocrystal with Oxalic Acid , 2008 .

[143]  M. Eddaoudi,et al.  Cocrystal Controlled Solid-State Synthesis of a Thermally Stable Nicotinate Analogue That Sustains an Isostructural Series of Porous Metal−Organic Materials , 2009 .

[144]  J. E. Carless,et al.  The polymorphism of aspirin , 1970, The Journal of pharmacy and pharmacology.

[145]  V. André,et al.  Revisiting paracetamol in a quest for new co-crystals , 2012 .

[146]  William Jones,et al.  Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding , 2009 .

[147]  S. James,et al.  Solvent-free synthesis of a microporous metal–organic framework , 2006 .

[148]  Miranda L. Cheney,et al.  Supramolecular Architectures of Meloxicam Carboxylic Acid Cocrystals, a Crystal Engineering Case Study , 2010 .

[149]  Jie Lu,et al.  Polymorphism of pharmaceutical molecules: perspectives on nucleation , 2010 .

[150]  L. Reddy,et al.  Polymorphs and polymorphic cocrystals of temozolomide. , 2008, Chemistry, an Asian journal.

[151]  Jean-Marie Lehn,et al.  Cryptates: inclusion complexes of macropolycyclic receptor molecules , 1978 .

[152]  Geoff G. Z. Zhang,et al.  Cocrystal intrinsic dissolution behavior using a rotating disk. , 2011, Journal of pharmaceutical sciences.

[153]  Fiona C. Strobridge,et al.  Mechanochemistry of magnesium oxide revisited: facile derivatisation of pharmaceuticals using coordination and supramolecular chemistry. , 2010, Chemical communications.

[154]  Matthew L Peterson,et al.  Celecoxib:nicotinamide dissociation: using excipients to capture the cocrystal's potential. , 2007, Molecular pharmaceutics.

[155]  D. Braga,et al.  Crystal Polymorphism and Multiple Crystal Forms , 2009 .

[156]  Colin R. Groom,et al.  Knowledge-based approaches to co-crystal design , 2014 .

[157]  Miranda L. Cheney,et al.  Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. , 2011, Journal of pharmaceutical sciences.

[158]  M. Zaworotko,et al.  Concomitant and Conformational Polymorphism, Conformational Isomorphism, and Phase Relationships in 4-Cyanopyridine·4,4‘-biphenol Cocrystals , 2006 .

[159]  T. Friščić,et al.  The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials , 2012 .

[160]  J. Steed,et al.  Channel-containing 1D coordination polymers based on a linear dimetallic spacer. , 2002, Chemical communications.

[161]  A. Matzger,et al.  Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. , 2003, Journal of pharmaceutical sciences.

[162]  David J. Berry,et al.  Pharmaceutical co-crystals – are we there yet? , 2014 .