A molecular shuttle that operates inside a metal-organic framework.

A 'molecular shuttle' is an interlocked molecular assembly in which a macrocyclic ring is able to move back and forth between two recognition sites. This large-amplitude translational motion was first characterized in solution in 1991. Since that report, many mechanically interlocked molecules (MIMs) have been designed, synthesized and shown to mimic the complex functions of macroscopic switches and machines. Here, we show that this fundamental concept-the translational motion of a molecular shuttle-can be organized, initiated and made to operate inside a crystalline, solid-state material. A metal-organic framework (MOF) designated UWDM-4 was prepared that contains a rigid linker that is a molecular shuttle. It was demonstrated by variable-temperature (1)H-(13)C cross-polarization/magic-angle spinning (CP/MAS) and (13)C 2D exchange correlation spectroscopy (EXSY) solid-state NMR at 21.1 T on a (13)C-enriched sample that the macrocyclic ring undergoes rapid shuttling along the rigid axle built between struts of the framework.

[1]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[2]  K. Zhu,et al.  Molecular shuttling of a compact and rigid H-shaped [2]rotaxane. , 2012, Angewandte Chemie.

[3]  Jonathan L. Sessler,et al.  A 'Texas-sized' molecular box that forms an anion-induced supramolecular necklace. , 2010, Nature chemistry.

[4]  H. Furukawa,et al.  A metal-organic framework with covalently bound organometallic complexes. , 2010, Journal of the American Chemical Society.

[5]  J. F. Stoddart,et al.  A catenated strut in a catenated metal-organic framework. , 2010, Angewandte Chemie.

[6]  C. Perrin,et al.  Application of two-dimensional NMR to kinetics of chemical exchange , 1990 .

[7]  P. Beer,et al.  Rotaxane and catenane host structures for sensing charged guest species. , 2014, Accounts of chemical research.

[8]  J. F. Stoddart,et al.  Robust dynamics. , 2010, Nature chemistry.

[9]  J. F. Stoddart,et al.  Three-dimensional architectures incorporating stereoregular donor-acceptor stacks. , 2013, Chemistry.

[10]  Michael O'Keeffe,et al.  The Chemistry and Applications of Metal‐Organic Frameworks , 2013 .

[11]  K. Zhu,et al.  Metal-organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change. , 2014, Journal of the American Chemical Society.

[12]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[13]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[14]  Jared T. Incorvati,et al.  Organic Switches for Surfaces and Devices , 2013, Advanced materials.

[15]  Richard R. Ernst,et al.  INVESTIGATION OF EXCHANGE PROCESSES BY TWO-DIMENSIONAL NMR SPECTROSCOPY , 1980 .

[16]  Kristopher J Harris,et al.  Metal-organic frameworks with dynamic interlocked components. , 2012, Nature chemistry.

[17]  M. Hawthorne,et al.  Symmetry and dynamics of molecular rotors in amphidynamic molecular crystals , 2010, Proceedings of the National Academy of Sciences.

[18]  A. Credi,et al.  Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld , 2008 .

[19]  V. Balzani Nanoscience and nanotechnology: The bottom-up construction of molecular devices and machines , 2008 .

[20]  Hong‐Cai Zhou,et al.  Tuning the Structure and Function of Metal—Organic Frameworks via Linker Design , 2014 .

[21]  K. Zhu,et al.  [2]Pseudorotaxanes from T-shaped benzimidazolium axles and [24]crown-8 wheels. , 2012, Organic letters.

[22]  David A Leigh,et al.  An allosterically regulated molecular shuttle. , 2006, Angewandte Chemie.

[23]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[24]  Alberto Credi,et al.  Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. , 2015, Nature nanotechnology.

[25]  Wesley R. Browne,et al.  Molecular Switches: FERINGA:MOL.SWIT.2ED 2VOL O-BK , 2011 .

[26]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[27]  David A Leigh,et al.  Chiroptical switching in a bistable molecular shuttle. , 2003, Journal of the American Chemical Society.

[28]  J. F. Stoddart,et al.  Metal-organic frameworks incorporating copper-complexed rotaxanes. , 2012, Angewandte Chemie.

[29]  Alex D. Bain,et al.  Chemical Exchange in NMR , 2003 .

[30]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[31]  Jean-Pierre Sauvage,et al.  Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .

[32]  J. W. Ward,et al.  Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine , 2013, Science.

[33]  E. Gillies From Molecules to Materials: Improving Human Health , 2010 .

[34]  Sarah J. Vella,et al.  Optically sensed, molecular shuttles driven by acid-base chemistry. , 2007, Chemical communications.

[35]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[36]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[37]  J. F. Stoddart,et al.  Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal-organic framework. , 2012, Journal of the American Chemical Society.

[38]  J. F. Stoddart,et al.  Great expectations: can artificial molecular machines deliver on their promise? , 2012, Chemical Society reviews.

[39]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[40]  Alan E. Rowan,et al.  Epoxidation of polybutadiene by a topologically linked catalyst , 2003, Nature.

[41]  J. F. Stoddart,et al.  Docking in Metal-Organic Frameworks , 2009, Science.

[42]  J. F. Stoddart,et al.  Putting mechanically interlocked molecules (MIMs) to work in tomorrow's world. , 2014, Angewandte Chemie.

[43]  J. F. Stoddart,et al.  A metal-organic framework replete with ordered donor-acceptor catenanes. , 2010, Chemical communications.

[44]  Jean-Pierre Sauvage,et al.  Molecular Catenanes, Rotaxanes and Knots , 1999 .

[45]  S. J. Loeb,et al.  Rotaxanes as ligands: from molecules to materials. , 2007, Chemical Society reviews.

[46]  V. Vukotic,et al.  Coordination polymers containing rotaxane linkers. , 2012, Chemical Society reviews.

[47]  Ryan M. Young,et al.  Relative unidirectional translation in an artificial molecular assembly fueled by light. , 2013, Journal of the American Chemical Society.

[48]  K. Zhu,et al.  Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles , 2012 .

[49]  A. Flood,et al.  A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. , 2013, Nature chemistry.