Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory

[1]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[2]  K. Liew,et al.  Resonance analysis of multi-layered graphene sheets used as nanoscale resonators , 2005, Nanotechnology.

[3]  K. Ekinci Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS). , 2005, Small.

[4]  Murali Krishna Ghatkesar,et al.  Micromechanical mass sensors for biomolecular detection in a physiological environment. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Spin manipulation using fast cantilever phase reversals , 2006 .

[6]  Michael L. Roukes,et al.  Self-Sensing Micro- and Nanocantilevers with Attonewton-Scale Force Resolution , 2006 .

[7]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[8]  Wenhui Duan,et al.  CALIBRATION OF NONLOCAL SCALING EFFECT PARAMETER FOR FREE VIBRATION OF CARBON NANOTUBES BY MOLECULAR DYNAMICS , 2007 .

[9]  J. M. Gray,et al.  High-Q GaN nanowire resonators and oscillators , 2007 .

[10]  C. Wang,et al.  The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes , 2007, Nanotechnology.

[11]  H. V. D. Zant,et al.  Nanomechanical properties of few-layer graphene membranes , 2008, 0802.0413.

[12]  Wenmiao Shu,et al.  Label-free detection of amyloid growth with microcantilever sensors. , 2008, Nanotechnology.

[13]  R. Mahameed,et al.  Piezoelectric aluminum nitride nanoelectromechanical actuators , 2009 .

[14]  Mauro Ferrari,et al.  Nanomedicine--challenge and perspectives. , 2009, Angewandte Chemie.

[15]  Andrea K. Bryan,et al.  Measurement of mass, density, and volume during the cell cycle of yeast , 2009, Proceedings of the National Academy of Sciences.

[16]  Sebastien Hentz,et al.  Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films , 2009 .

[17]  Le Shen,et al.  Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments , 2010 .

[18]  Ö. Civalek,et al.  FREE VIBRATION ANALYSIS OF MICROTUBULES AS CYTOSKELETON COMPONENTS: NONLOCAL EULER-BERNOULLI BEAM MODELING , 2010 .

[19]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[20]  Ömer Civalek,et al.  Free Vibration Analysis of Carbon Nanotubes Based on Shear Deformable Beam Theory by Discrete Singular Convolution Technique , 2010 .

[21]  Liying Jiang,et al.  The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects , 2011, Nanotechnology.

[22]  M. Roukes,et al.  Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.

[23]  Liying Jiang,et al.  Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects , 2011 .

[24]  Dae Sung Yoon,et al.  Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics pri , 2011 .

[25]  A. Farajpour,et al.  VIBRATION ANALYSIS OF NANORINGS USING NONLOCAL CONTINUUM MECHANICS AND SHEAR DEFORMABLE RING THEORY , 2011 .

[26]  Metin Aydogdu,et al.  Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity , 2012 .

[27]  A. Farajpour,et al.  Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics , 2012 .

[28]  Liying Jiang,et al.  Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness , 2012 .

[29]  A. Farajpour,et al.  AXIAL VIBRATION ANALYSIS OF A TAPERED NANOROD BASED ON NONLOCAL ELASTICITY THEORY AND DIFFERENTIAL QUADRATURE METHOD , 2012 .

[30]  L. Ke,et al.  Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory , 2012 .

[31]  L. Ke,et al.  Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory , 2012 .

[32]  H. V. D. Zant,et al.  Mechanical systems in the quantum regime , 2011, 1106.2060.

[33]  A. Farajpour,et al.  Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression , 2013 .

[34]  Ö. Civalek,et al.  Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models , 2013 .

[35]  E. Ghavanloo,et al.  Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics , 2013, Nanotechnology.

[36]  V. Gupta,et al.  Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. , 2013, Nanoscale.

[37]  S. Kitipornchai,et al.  Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory , 2013 .

[38]  Paul M. Weaver,et al.  Measurement techniques for piezoelectric nanogenerators , 2013 .

[39]  M. E. Golmakani,et al.  Nonlinear bending analysis of orthotropic nanoscale plates in an elastic matrix based on nonlocal continuum mechanics , 2014 .

[40]  R. Nazemnezhad,et al.  Nonlocal nonlinear free vibration of functionally graded nanobeams , 2014 .

[41]  A. Farajpour,et al.  EXACT SOLUTION FOR THERMO-MECHANICAL VIBRATION OF ORTHOTROPIC MONO-LAYER GRAPHENE SHEET EMBEDDED IN AN ELASTIC MEDIUM , 2014 .

[42]  Amir Hessam Hassani,et al.  Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics , 2014 .

[43]  A. Farajpour,et al.  Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium , 2014 .