Assembling curvature continuous surfaces from triangular patches

We assemble triangular patches of total degree at most eight to form a curvature continuous surface. The construction illustrates how separation of local shape from representation and formal continuity yields an effective construction paradigm in partly underconstrained scenarios. The approach localizes the technical challenges and applies the spline approach, i.e. keeping the degree fixed but increasing the number of pieces, to deal with increased complexity when many patches join at a central point.

[1]  Günther Greiner,et al.  Variational Design and Fairing of Spline Surfaces , 1994, Comput. Graph. Forum.

[2]  Hartmut Prautzsch,et al.  Parametrizations for triangular Gk spline surfaces of low degree , 2006, TOGS.

[3]  Charles T. Loop Second order smoothness over extraordinary vertices , 2004, SGP '04.

[4]  John A. Gregory,et al.  A C2 polygonal surface patch , 1989, Comput. Aided Geom. Des..

[5]  Xiuzi Ye,et al.  Curvature continuous interpolation of curve meshes , 1997, Comput. Aided Geom. Des..

[6]  Andrew P. Witkin,et al.  Variational surface modeling , 1992, SIGGRAPH.

[7]  Jörg Peters,et al.  Concentric tessellation maps and curvature continuous guided surfaces , 2007, Comput. Aided Geom. Des..

[8]  Jörg Peters,et al.  Guided spline surfaces , 2009, Comput. Aided Geom. Des..

[9]  John A. Gregory,et al.  Irregular C2 surface construction using bi-polynomial rectangular patches , 1999, Comput. Aided Geom. Des..

[10]  Ming-Jun Lai,et al.  Bivariate splines for fluid flows , 2004 .

[11]  C. D. Boor,et al.  Box splines , 1993 .

[12]  Josep Cotrina Navau,et al.  Modeling surfaces from meshes of arbitrary topology , 2000, Comput. Aided Geom. Des..

[13]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[14]  Hartmut Prautzsch,et al.  Freeform splines , 1997, Computer Aided Geometric Design.

[15]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[16]  J. Hahn,et al.  Filling polygonal holes with rectangular patches , 1989 .

[17]  Charles T. Loop,et al.  G2 Tensor Product Splines over Extraordinary Vertices , 2008, Comput. Graph. Forum.

[18]  Jörg Peters,et al.  Curvature continuous spline surfaces over irregular meshes , 1996, Comput. Aided Geom. Des..

[19]  H. Prautzsch,et al.  Triangular G2-Splines , 2000 .

[20]  John F. Hughes,et al.  Modeling surfaces of arbitrary topology using manifolds , 1995, SIGGRAPH.

[21]  U. Reif TURBS—Topologically Unrestricted Rational B-Splines , 1998 .