Ghost-free vector superfield actions in supersymmetric higher-derivative theories
暂无分享,去创建一个
[1] M. Nitta,et al. Spatially modulated vacua in a Lorentz-invariant scalar field theory , 2017, The European Physical Journal C.
[2] M. Nitta,et al. Supersymmetry breaking in spatially modulated vacua , 2017, 1706.05232.
[3] M. Nitta,et al. Spatially Modulated Vacua in Relativistic Field Theories , 2017 .
[4] M. Yamaguchi,et al. Ghost free systems with coexisting bosons and fermions , 2017 .
[5] A. Wereszczynski,et al. Non-uniqueness of the supersymmetric extension of the O(3) σ-model , 2017, 1703.07343.
[6] S. B. Gudnason,et al. Topological solitons in the supersymmetric Skyrme model , 2016, 1608.03526.
[7] T. Fujimori,et al. Ghostbusters in higher derivative supersymmetric theories: who is afraid of propagating auxiliary fields? , 2016, 1608.01843.
[8] A. Mazumdar,et al. Nonlocal N=1 supersymmetry , 2016, 1608.01652.
[9] J. Queiruga. Baby Skyrme model and fermionic zero modes , 2016, 1606.02869.
[10] S. B. Gudnason,et al. A supersymmetric Skyrme model , 2015, 1512.07557.
[11] Y. Rodríguez,et al. Generalized Proca action for an Abelian vector field , 2015, 1511.03101.
[12] A. Westphal,et al. Starobinsky-type inflation from α′-corrections , 2015, 1509.00024.
[13] J. Queiruga. Skyrme-like models and supersymmetry in 3+1 dimensions , 2015, 1508.06692.
[14] A. Westphal,et al. Higher-derivative supergravity and moduli stabilization , 2015, 1505.03092.
[15] Y. Sakamura,et al. Massive vector multiplet inflation with Dirac-Born-Infeld type action , 2015, 1505.02235.
[16] M. Nitta,et al. Classifying BPS states in supersymmetric gauge theories coupled to higher derivative chiral models , 2015, 1504.08123.
[17] Shuntaro Aoki,et al. Impacts of supersymmetric higher derivative terms on inflation models in supergravity , 2015, 1504.07023.
[18] Y. Sakamura,et al. Matter coupled Dirac-Born-Infeld action in four-dimensional N=1 conformal supergravity , 2015, 1504.01221.
[19] E. Dudas,et al. Effective operators in SUSY, superfield constraints and searches for a UV completion , 2015, 1503.08319.
[20] W. Zakrzewski,et al. Baby Skyrme model, near-BPS approximations, and supersymmetric extensions , 2014, 1407.3140.
[21] Rikard von Unge,et al. Complex Linear Effective Theory and Supersymmetry Breaking Vacua , 2014, 1403.0935.
[22] Shuntaro Aoki,et al. Inflation in supergravity without Kähler potential , 2014, 1409.4183.
[23] M. Nitta,et al. Higher derivative corrections to manifestly supersymmetric nonlinear realizations , 2014, 1408.4210.
[24] Simon J. Tyler,et al. The one-loop effective potential of the Wess-Zumino model revisited , 2014, 1407.5270.
[25] M. Nitta,et al. BPS States in Supersymmetric Chiral Models with Higher Derivative Terms , 2014, 1406.7647.
[26] P. Catastini,et al. Search for direct top-squark pair production in final states with two leptons in pp collisions at $ \sqrt{s} $ = 8 TeV with the ATLAS detector , 2014 .
[27] Lavinia Heisenberg. Generalization of the Proca Action , 2014, 1402.7026.
[28] G. Tasinato. Cosmic acceleration from Abelian symmetry breaking , 2014, 1402.6450.
[29] Khachatryan,et al. Search for W′ → tb decays in the lepton + jets final state in pp collisions at $ \sqrt{s} $ = 8 TeV , 2014, 1402.2176.
[30] S. Ferrara,et al. Supersymmetry Breaking by Higher Dimension Operators , 2013, 1309.1476.
[31] A. Kehagias,et al. On ghost-free supersymmetric galileons , 2013, 1306.2961.
[32] C. Adam,et al. Extended supersymmetry and BPS solutions in baby Skyrme models , 2013, Journal of High Energy Physics.
[33] M. Sheikh-Jabbari,et al. Gauge fields and inflation , 2012, 1212.2921.
[34] B. Ovrut,et al. Ghost Condensate in N = 1 Supergravity , 2012, 1212.2185.
[35] A. Kehagias,et al. Emerging potentials in higher-derivative gauged chiral models coupled to $ \mathcal{N}=1 $ supergravity , 2012, 1207.4767.
[36] B. Ovrut,et al. Higher-derivative chiral superfield actions coupled to N = 1 supergravity , 2012, 1207.3798.
[37] Masahide Yamaguchi,et al. Supersymmetric DBI inflation , 2012, 1205.1353.
[38] K. Ohashi,et al. Higher Derivative Corrections to Non-Abelian Vortex Effective Theory , 2012, 1204.0773.
[39] A. Kehagias,et al. Emerging potentials in higher-derivative gauged chiral models coupled to N = 1 supergravity , 2012 .
[40] E. Saridakis,et al. A new class of four-dimensional N = 1 supergravity with non-minimal derivative couplings , 2012 .
[41] J. Yokoyama,et al. Generalized G-Inflation —Inflation with the Most General Second-Order Field Equations— , 2011, 1105.5723.
[42] C. Adam,et al. N=1 supersymmetric extension of the baby Skyrme model , 2011, 1105.1168.
[43] J. Khoury,et al. Supersymmetric Galileons , 2011, 1103.0003.
[44] Simon J. Tyler,et al. Complex linear superfield as a model for Goldstino , 2011, 1102.3042.
[45] M. M. Sheikh-Jabbari,et al. Non-Abelian Gauge Field Inflation , 2011, 1102.1932.
[46] M. M. Sheikh-Jabbari,et al. Gauge-flation: Inflation From Non-Abelian Gauge Fields , 2011, 1102.1513.
[47] J. Khoury,et al. Supersymmetric P(X,phi) and the Ghost Condensate , 2010, 1012.3748.
[48] S. Kuzenko. Fayet-Iliopoulos term and nonlinear self-duality , 2009, 0911.5190.
[49] J. Khoury,et al. D ec 2 01 0 Supersymmetric P ( X , φ ) and the Ghost Condensate , 2010 .
[50] R. Rattazzi,et al. Galileon as a local modification of gravity , 2008, 0811.2197.
[51] E. Dudas,et al. Supersymmetric Models with Higher Dimensional Operators , 2007, 0708.0383.
[52] A. Banin,et al. Quantum properties of the four-dimensional generic chiral superfield model , 2006, hep-th/0606242.
[53] R. Woodard. Avoiding dark energy with 1/r modifications of gravity , 2006, astro-ph/0601672.
[54] S. Kuzenko,et al. On the component structure of Script N = 1 supersymmetric nonlinear electrodynamics , 2005, hep-th/0501172.
[55] S. Kuzenko,et al. On the component structure ofN = 1 supersymmetric nonlinear electrodynamics , 2005 .
[56] J. Bijnens,et al. Pi pi scattering in three flavor ChPT , 2004, hep-ph/0401039.
[57] L. Freyhult. The supersymmetric extension of the Faddeev model , 2003, hep-th/0310261.
[58] S. Kuzenko,et al. Nonlinear self-duality and supergravity , 2002, hep-th/0212039.
[59] Eduardo J S Villaseñor. Higher derivative fermionic field theories , 2002, hep-th/0203197.
[60] Jr.,et al. The superspace WZNW action for 4D, N=1 supersymmetric QCD , 2000, hep-ph/0012301.
[61] Jr.,et al. Supersymmetric gauge anomaly with general homotopic paths , 2000, hep-th/0009192.
[62] M. Nitta. A NOTE ON SUPERSYMMETRIC WZW TERM IN FOUR DIMENSIONS , 2000, hep-th/0101166.
[63] S. Theisen,et al. Non-linear Self-duality and Supersymmetry , 2000, hep-th/0007231.
[64] Jr.,et al. Holomorphy minimal homotopy and the 4D, N=1 supersymmetric Bardeen-Gross-Jackiw anomaly term , 2000, hep-th/0002045.
[65] S. Theisen,et al. Supersymmetric duality rotations , 2000, hep-th/0001068.
[66] S. Theisen,et al. Nonlinear selfduality and supersymmetry , 2000 .
[67] M. Roček,et al. Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions , 1998, hep-th/9811232.
[68] J. Bagger,et al. The tensor Goldstone multiplet for partially broken supersymmetry , 1997, hep-th/9707061.
[69] J. Bagger,et al. New Goldstone multiplet for partially broken supersymmetry , 1996, hep-th/9608177.
[70] S.J.Gates. Why Auxiliary Fields Matter: The Strange Case of the 4D, N = 1 Supersymmetric QCD Effective Action (II) , 1996, hep-th/9606109.
[71] Jr.,et al. Why auxiliary fields matter: the strange case of the 4D, N = 1 supersymmetric QCD effective action (II) , 1995, hep-th/9508153.
[72] I. Buchbinder,et al. Superfield chiral effective potential , 1994 .
[73] I. Buchbinder,et al. Supersymmetric effective potential: Superfield approach , 1994 .
[74] L. Girardello,et al. Structure of the scalar potential in general N = 1 higher derivative supergravity in four dimensions , 1987 .
[75] S. Ferrara,et al. Supersymmetric born-infeld lagrangians , 1987 .
[76] R. Rohm,et al. Anomaly constraints on supersymmetric effective lagrangians , 1985 .
[77] Rafael I. Nepomechie,et al. SUPERSYMMETRIC SKYRMIONS IN FOUR DIMENSIONS , 1985 .
[78] M. Waldrop. Supersymmetry and supergravity. , 1983, Science.
[79] G. W. Horndeski. Second-order scalar-tensor field equations in a four-dimensional space , 1974 .
[80] M. Ostrogradsky. Mémoires sur les équations différentielles, relatives au problème des isopérimètres , 1850 .