Ghost-free vector superfield actions in supersymmetric higher-derivative theories

[1]  M. Nitta,et al.  Spatially modulated vacua in a Lorentz-invariant scalar field theory , 2017, The European Physical Journal C.

[2]  M. Nitta,et al.  Supersymmetry breaking in spatially modulated vacua , 2017, 1706.05232.

[3]  M. Nitta,et al.  Spatially Modulated Vacua in Relativistic Field Theories , 2017 .

[4]  M. Yamaguchi,et al.  Ghost free systems with coexisting bosons and fermions , 2017 .

[5]  A. Wereszczynski,et al.  Non-uniqueness of the supersymmetric extension of the O(3) σ-model , 2017, 1703.07343.

[6]  S. B. Gudnason,et al.  Topological solitons in the supersymmetric Skyrme model , 2016, 1608.03526.

[7]  T. Fujimori,et al.  Ghostbusters in higher derivative supersymmetric theories: who is afraid of propagating auxiliary fields? , 2016, 1608.01843.

[8]  A. Mazumdar,et al.  Nonlocal N=1 supersymmetry , 2016, 1608.01652.

[9]  J. Queiruga Baby Skyrme model and fermionic zero modes , 2016, 1606.02869.

[10]  S. B. Gudnason,et al.  A supersymmetric Skyrme model , 2015, 1512.07557.

[11]  Y. Rodríguez,et al.  Generalized Proca action for an Abelian vector field , 2015, 1511.03101.

[12]  A. Westphal,et al.  Starobinsky-type inflation from α′-corrections , 2015, 1509.00024.

[13]  J. Queiruga Skyrme-like models and supersymmetry in 3+1 dimensions , 2015, 1508.06692.

[14]  A. Westphal,et al.  Higher-derivative supergravity and moduli stabilization , 2015, 1505.03092.

[15]  Y. Sakamura,et al.  Massive vector multiplet inflation with Dirac-Born-Infeld type action , 2015, 1505.02235.

[16]  M. Nitta,et al.  Classifying BPS states in supersymmetric gauge theories coupled to higher derivative chiral models , 2015, 1504.08123.

[17]  Shuntaro Aoki,et al.  Impacts of supersymmetric higher derivative terms on inflation models in supergravity , 2015, 1504.07023.

[18]  Y. Sakamura,et al.  Matter coupled Dirac-Born-Infeld action in four-dimensional N=1 conformal supergravity , 2015, 1504.01221.

[19]  E. Dudas,et al.  Effective operators in SUSY, superfield constraints and searches for a UV completion , 2015, 1503.08319.

[20]  W. Zakrzewski,et al.  Baby Skyrme model, near-BPS approximations, and supersymmetric extensions , 2014, 1407.3140.

[21]  Rikard von Unge,et al.  Complex Linear Effective Theory and Supersymmetry Breaking Vacua , 2014, 1403.0935.

[22]  Shuntaro Aoki,et al.  Inflation in supergravity without Kähler potential , 2014, 1409.4183.

[23]  M. Nitta,et al.  Higher derivative corrections to manifestly supersymmetric nonlinear realizations , 2014, 1408.4210.

[24]  Simon J. Tyler,et al.  The one-loop effective potential of the Wess-Zumino model revisited , 2014, 1407.5270.

[25]  M. Nitta,et al.  BPS States in Supersymmetric Chiral Models with Higher Derivative Terms , 2014, 1406.7647.

[26]  P. Catastini,et al.  Search for direct top-squark pair production in final states with two leptons in pp collisions at $ \sqrt{s} $ = 8 TeV with the ATLAS detector , 2014 .

[27]  Lavinia Heisenberg Generalization of the Proca Action , 2014, 1402.7026.

[28]  G. Tasinato Cosmic acceleration from Abelian symmetry breaking , 2014, 1402.6450.

[29]  Khachatryan,et al.  Search for W′ → tb decays in the lepton + jets final state in pp collisions at $ \sqrt{s} $ = 8 TeV , 2014, 1402.2176.

[30]  S. Ferrara,et al.  Supersymmetry Breaking by Higher Dimension Operators , 2013, 1309.1476.

[31]  A. Kehagias,et al.  On ghost-free supersymmetric galileons , 2013, 1306.2961.

[32]  C. Adam,et al.  Extended supersymmetry and BPS solutions in baby Skyrme models , 2013, Journal of High Energy Physics.

[33]  M. Sheikh-Jabbari,et al.  Gauge fields and inflation , 2012, 1212.2921.

[34]  B. Ovrut,et al.  Ghost Condensate in N = 1 Supergravity , 2012, 1212.2185.

[35]  A. Kehagias,et al.  Emerging potentials in higher-derivative gauged chiral models coupled to $ \mathcal{N}=1 $ supergravity , 2012, 1207.4767.

[36]  B. Ovrut,et al.  Higher-derivative chiral superfield actions coupled to N = 1 supergravity , 2012, 1207.3798.

[37]  Masahide Yamaguchi,et al.  Supersymmetric DBI inflation , 2012, 1205.1353.

[38]  K. Ohashi,et al.  Higher Derivative Corrections to Non-Abelian Vortex Effective Theory , 2012, 1204.0773.

[39]  A. Kehagias,et al.  Emerging potentials in higher-derivative gauged chiral models coupled to N = 1 supergravity , 2012 .

[40]  E. Saridakis,et al.  A new class of four-dimensional N = 1 supergravity with non-minimal derivative couplings , 2012 .

[41]  J. Yokoyama,et al.  Generalized G-Inflation —Inflation with the Most General Second-Order Field Equations— , 2011, 1105.5723.

[42]  C. Adam,et al.  N=1 supersymmetric extension of the baby Skyrme model , 2011, 1105.1168.

[43]  J. Khoury,et al.  Supersymmetric Galileons , 2011, 1103.0003.

[44]  Simon J. Tyler,et al.  Complex linear superfield as a model for Goldstino , 2011, 1102.3042.

[45]  M. M. Sheikh-Jabbari,et al.  Non-Abelian Gauge Field Inflation , 2011, 1102.1932.

[46]  M. M. Sheikh-Jabbari,et al.  Gauge-flation: Inflation From Non-Abelian Gauge Fields , 2011, 1102.1513.

[47]  J. Khoury,et al.  Supersymmetric P(X,phi) and the Ghost Condensate , 2010, 1012.3748.

[48]  S. Kuzenko Fayet-Iliopoulos term and nonlinear self-duality , 2009, 0911.5190.

[49]  J. Khoury,et al.  D ec 2 01 0 Supersymmetric P ( X , φ ) and the Ghost Condensate , 2010 .

[50]  R. Rattazzi,et al.  Galileon as a local modification of gravity , 2008, 0811.2197.

[51]  E. Dudas,et al.  Supersymmetric Models with Higher Dimensional Operators , 2007, 0708.0383.

[52]  A. Banin,et al.  Quantum properties of the four-dimensional generic chiral superfield model , 2006, hep-th/0606242.

[53]  R. Woodard Avoiding dark energy with 1/r modifications of gravity , 2006, astro-ph/0601672.

[54]  S. Kuzenko,et al.  On the component structure of Script N = 1 supersymmetric nonlinear electrodynamics , 2005, hep-th/0501172.

[55]  S. Kuzenko,et al.  On the component structure ofN = 1 supersymmetric nonlinear electrodynamics , 2005 .

[56]  J. Bijnens,et al.  Pi pi scattering in three flavor ChPT , 2004, hep-ph/0401039.

[57]  L. Freyhult The supersymmetric extension of the Faddeev model , 2003, hep-th/0310261.

[58]  S. Kuzenko,et al.  Nonlinear self-duality and supergravity , 2002, hep-th/0212039.

[59]  Eduardo J S Villaseñor Higher derivative fermionic field theories , 2002, hep-th/0203197.

[60]  Jr.,et al.  The superspace WZNW action for 4D, N=1 supersymmetric QCD , 2000, hep-ph/0012301.

[61]  Jr.,et al.  Supersymmetric gauge anomaly with general homotopic paths , 2000, hep-th/0009192.

[62]  M. Nitta A NOTE ON SUPERSYMMETRIC WZW TERM IN FOUR DIMENSIONS , 2000, hep-th/0101166.

[63]  S. Theisen,et al.  Non-linear Self-duality and Supersymmetry , 2000, hep-th/0007231.

[64]  Jr.,et al.  Holomorphy minimal homotopy and the 4D, N=1 supersymmetric Bardeen-Gross-Jackiw anomaly term , 2000, hep-th/0002045.

[65]  S. Theisen,et al.  Supersymmetric duality rotations , 2000, hep-th/0001068.

[66]  S. Theisen,et al.  Nonlinear selfduality and supersymmetry , 2000 .

[67]  M. Roček,et al.  Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions , 1998, hep-th/9811232.

[68]  J. Bagger,et al.  The tensor Goldstone multiplet for partially broken supersymmetry , 1997, hep-th/9707061.

[69]  J. Bagger,et al.  New Goldstone multiplet for partially broken supersymmetry , 1996, hep-th/9608177.

[70]  S.J.Gates Why Auxiliary Fields Matter: The Strange Case of the 4D, N = 1 Supersymmetric QCD Effective Action (II) , 1996, hep-th/9606109.

[71]  Jr.,et al.  Why auxiliary fields matter: the strange case of the 4D, N = 1 supersymmetric QCD effective action (II) , 1995, hep-th/9508153.

[72]  I. Buchbinder,et al.  Superfield chiral effective potential , 1994 .

[73]  I. Buchbinder,et al.  Supersymmetric effective potential: Superfield approach , 1994 .

[74]  L. Girardello,et al.  Structure of the scalar potential in general N = 1 higher derivative supergravity in four dimensions , 1987 .

[75]  S. Ferrara,et al.  Supersymmetric born-infeld lagrangians , 1987 .

[76]  R. Rohm,et al.  Anomaly constraints on supersymmetric effective lagrangians , 1985 .

[77]  Rafael I. Nepomechie,et al.  SUPERSYMMETRIC SKYRMIONS IN FOUR DIMENSIONS , 1985 .

[78]  M. Waldrop Supersymmetry and supergravity. , 1983, Science.

[79]  G. W. Horndeski Second-order scalar-tensor field equations in a four-dimensional space , 1974 .

[80]  M. Ostrogradsky Mémoires sur les équations différentielles, relatives au problème des isopérimètres , 1850 .