Computation of controllability and observability Gramians in modeling of discrete‐time noncommensurate fractional‐order systems

This paper presents a new algorithm for computation of controllability and observability Gramians for an expanded state space form of integer‐order approximator to linear time‐invariant discrete‐time noncommensurate fractional‐order systems. The introduced methodology can significantly reduce the time complexity of the Gramians' calculation, being the main computational burden in modeling of discrete‐time fractional‐order systems by means of a high integer‐order expanded state space approximator and the balanced truncation reduction method. Simulation experiments illustrate an efficiency of the introduced methodology, in particular for low‐dimension fractional‐order systems and high implementation lengths.

[1]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[2]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[3]  R. Bagley,et al.  The fractional order state equations for the control of viscoelastically damped structures , 1989 .

[4]  M. Safonov,et al.  A Schur method for balanced-truncation model reduction , 1989 .

[5]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[6]  Thilo Penzl,et al.  Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..

[7]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[8]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[9]  Brian D. O. Anderson,et al.  Accuracy-enhancing methods for balancing-related frequency-weighted model and controller reduction , 2003, Autom..

[10]  T. Poinot,et al.  Identification of Fractional Systems Using an Output-Error Technique , 2004 .

[11]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[12]  Alexandre Megretski,et al.  Fourier Series for Accurate, Stable, Reduced-Order Models in Large-Scale Linear Applications , 2005, SIAM J. Sci. Comput..

[13]  Y. Ferdi Computation of Fractional Order Derivative and Integral via Power Series Expansion and Signal Modelling , 2006 .

[14]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[15]  D. Sierociuk,et al.  Stability of Discrete Fractional Order State-space Systems , 2008 .

[16]  H. Akçay,et al.  Thermal modeling and identification of an aluminum rod using fractional calculus , 2009 .

[17]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[18]  M. Shitikova,et al.  Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results , 2010 .

[19]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[20]  Thierry Poinot,et al.  Fractional modelling and identification of thermal systems , 2011, Signal Process..

[21]  M. Bettayeb,et al.  Discrete-Time Fractional-Order Systems: Modeling and Stability Issues , 2012 .

[22]  Krzysztof J. Latawiec,et al.  Normalized finite fractional differences: Computational and accuracy breakthroughs , 2012, Int. J. Appl. Math. Comput. Sci..

[23]  I. Podlubny,et al.  Modelling heat transfer in heterogeneous media using fractional calculus , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Margarita Rivero,et al.  Stability of Fractional Order Systems , 2013 .

[25]  Thomas Wolf,et al.  Model Order Reduction by Approximate Balanced Truncation: A Unifying Framework / Modellreduktion durch approximatives Balanciertes Abschneiden: eine vereinigende Formulierung , 2013, Autom..

[26]  P. Benner,et al.  Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey , 2013 .

[27]  Thierry Poinot,et al.  Comparison of two LPV fractional models used for ultracapacitor identification , 2013 .

[28]  J. Lam,et al.  H∞ Model Reduction for Positive Fractional Order Systems , 2014 .

[29]  Umberto Viaro,et al.  A method for the integer-order approximation of fractional-order systems , 2014, J. Frankl. Inst..

[30]  Tarun Kumar Rawat,et al.  Optimal design of FIR fractional order differentiator using cuckoo search algorithm , 2015, Expert Syst. Appl..

[31]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[32]  Krzysztof J. Latawiec,et al.  Modeling of Discrete-Time Fractional-Order State Space Systems Using the Balanced Truncation Method , 2015, RRNR.

[33]  S. Das,et al.  A New Method for Getting Rational Approximation for Fractional Order Differintegrals , 2015 .

[34]  Ahmed S. Elwakil,et al.  Fractional-order models of supercapacitors, batteries and fuel cells: a survey , 2015, Materials for Renewable and Sustainable Energy.

[35]  M. Łukaniszyn,et al.  A Comparative Analysis of Laguerre-Based Approximators to the Grünwald-Letnikov Fractional-Order Difference , 2015 .

[36]  Peter Benner,et al.  Frequency-Limited Balanced Truncation with Low-Rank Approximations , 2016, SIAM J. Sci. Comput..

[37]  K. Latawiec,et al.  Fractional-Order Discrete-Time Laguerre Filters: A New Tool for Modeling and Stability Analysis of Fractional-Order LTI SISO Systems , 2016 .

[38]  P. Balasubramaniam,et al.  Fractional order stochastic dynamical systems with distributed delayed control and Poisson jumps , 2016 .

[39]  Birgit Dietrich,et al.  Model Reduction For Control System Design , 2016 .

[40]  Clara-Mihaela Ionescu,et al.  The role of fractional calculus in modeling biological phenomena: A review , 2017, Commun. Nonlinear Sci. Numer. Simul..

[41]  Ha Binh Minh,et al.  Frequency Interval Cross Gramians for Linear and Bilinear Systems , 2017 .

[42]  T. Kaczorek Minimum Energy Control of Fractional Descriptor Discrete‐Time Linear Systems with Bounded Inputs Using The DRAZIN Inverse , 2017 .

[43]  R. Stanisławski New results in stability analysis for LTI SISO systems modeled by GL-discretized fractional-order transfer functions , 2017 .

[44]  P. Balasubramaniam,et al.  The Controllability of Fractional Damped Stochastic Integrodifferential Systems , 2017 .

[45]  Khawaja Shafiq Haider,et al.  Model Reduction of Large Scale Descriptor Systems Using Time Limited Gramians , 2017 .

[46]  Krzysztof J. Latawiec,et al.  Modeling of discrete-time fractional-order state space systems using the balanced truncation method , 2017, J. Frankl. Inst..

[47]  A. Cohen,et al.  Model Reduction and Approximation: Theory and Algorithms , 2017 .

[48]  Pantelis Sopasakis,et al.  Stabilising model predictive control for discrete-time fractional-order systems , 2016, Autom..

[49]  Shiqi Zheng,et al.  Adaptive Fractional Order PI Controller Design for a Flexible Swing arm System Via Enhanced Virtual Reference Feedback Tuning , 2018 .

[50]  António M. Lopes,et al.  Stabilization of Uncertain Multi‐Order Fractional Systems Based on the Extended State Observer , 2018 .

[51]  Marek Rydel,et al.  A new frequency weighted Fourier-based method for model order reduction , 2018, Autom..

[52]  A. Ghafoor,et al.  Frequency Interval Gramians Based Structure Preserving Model Order Reduction for Second Order Systems , 2018 .

[53]  M. Muslim,et al.  Controllability of Fractional Differential Equation of Order α∈(1,2] With Non‐Instantaneous Impulses , 2018 .

[54]  Yude Ji,et al.  Stabilization of Non‐Linear Fractional‐Order Uncertain Systems , 2018 .

[55]  Mahdi Sojoodi,et al.  Stability and Stabilization of Fractional‐Order Systems with Different Derivative Orders: An LMI Approach , 2017, Asian Journal of Control.

[56]  S. P. Nangrani,et al.  Fractional Order Controller for Controlling Power System Dynamic Behavior , 2018 .

[57]  V. R. Harindran,et al.  Fractional-order Systems and PID Controllers , 2020 .