Monotone multigrid methods for elliptic variational inequalities I

SummaryWe derive fast solvers for discrete elliptic variational inequalities of the first kind (obstacle problems) as resulting from the approximation of related continuous problems by piecewise linear finite elements. Using basic ideas of successive subspace correction, we modify well-known relaxation methods by extending the set of search directions. Extended underrelaxations are called monotone multigrid methods, if they are quasioptimal in a certain sense. By construction, all monotone multigrid methods are globally convergent. We take a closer look at two natural variants, the standard monotone multigrid method and a truncated version. For the considered model problems, the asymptotic convergence rates resulting from the standard approach suffer from insufficient coarse-grid transport, while the truncated monotone multigrid method provides the same efficiency as in the unconstrained case.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  W. Fitzgibbon Approximations of nonlinear evolution equations , 1973 .

[3]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[4]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[5]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[6]  Charles M. Elliott,et al.  On the Finite Element Approximation of an Elliptic Variational Inequality Arising from an Implicit Time Discretization of the Stefan Problem , 1981 .

[7]  C. M. Elliott,et al.  Weak and variational methods for moving boundary problems , 1982 .

[8]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[9]  A. Brandt,et al.  Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems , 1983 .

[10]  W. Hackbusch,et al.  On multi-grid methods for variational inequalities , 1983 .

[11]  W. Hager Review: R. Glowinski, J. L. Lions and R. Trémolières, Numerical analysis of variational inequalities , 1983 .

[12]  J. Crank Free and moving boundary problems , 1984 .

[13]  J. Mandel,et al.  Etude algébrique d'une méthode multigrille pour quelques problèmes de frontière libre , 1984 .

[14]  J. Mandel A multilevel iterative method for symmetric, positive definite linear complementarity problems , 1984 .

[15]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[16]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[17]  R.H.W Hoppe Two-sided approximations for unilateral variational inequalities by multi-grid methods , 1987 .

[18]  R. Hoppe Multigrid Algorithms for Variational Inequalities , 1987 .

[19]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[20]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[21]  Arnold Reusken,et al.  On Global Multigrid Convergence for Nonlinear Problems , 1989 .

[22]  W. Hackbusch,et al.  Analysis of a damped nonlinear multilevel method , 1989 .

[23]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[24]  Ronald H. W. Hoppe Numerical solution of multicomponent alloy solidification by multigrid techniques , 1990, IMPACT Comput. Sci. Eng..

[25]  Ronald H. W. Hoppe Une méthode multigrille pour la solution des problèmes d'obstacle , 1990 .

[26]  R. Hoppe,et al.  Multi‐grid solution of two coupled Stefan equations arising in induction heating of large steel slabs , 1990 .

[27]  Harry Yserentant,et al.  Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .

[28]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[29]  R. Kornhuber,et al.  Self adaptive computation of the breakdown voltage of planar pn-junctions with multistep field plates , 1991 .

[30]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[31]  Xuejun Zhang,et al.  Multilevel Schwarz methods , 1992 .

[32]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[33]  Stephen F. McCormick,et al.  Multilevel projection methods for partial differential equations , 1992, CBMS-NSF regional conference series in applied mathematics.

[34]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[35]  Ronald H. W. Hoppe,et al.  A globally convergent multi-grid algorithm for moving boundary problems of two-phase Stefan type , 1993 .

[36]  Jens Lang,et al.  Kaskade Manual - Version 2.0. , 1993 .

[37]  R. Kornhuber,et al.  Self-adaptive finite-element simulation of bipolar, strongly reverse-biased pn-junctions , 1993 .

[38]  Ralf Kornhuber,et al.  Adaptive finite element methods for variational inequalities , 1993 .

[39]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[40]  H. Yserentant,et al.  Multilevel methods for elliptic problems on domains not resolved by the coarse grid , 1994 .

[41]  R. Hoppe,et al.  Adaptive multilevel methods for obstacle problems , 1994 .

[42]  Ralf Kornhuber,et al.  Adaptive multilevel-methods for obstacle problems in three space dimensions , 1994 .

[43]  Max Planitz,et al.  Acta numerica 1993 , edited by A. Iserles. Pp. 326. £24.95 1993. ISBN 0-521-44356-3 (hardback) (Cambridge University Press) - Acta numerica 1994 , edited by A. Iserles. Pp. 572. £27.95 1994. ISBN 0-521-46181-2 (hardback) (Cambridge University Press) , 1995, The Mathematical Gazette.

[44]  R. Kornhuber Monotone multigrid methods for elliptic variational inequalities II , 1996 .

[45]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .