Practicing vision: Integration, evaluation and applications

Abstract Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the ″Grand Challenges″ and also from its prominent role in the National Information Infrastructure. While the design of a general purpose vision system continues to be elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. We discuss and demonstrate advantages of (i) multi-sensor fusion, (ii) combination of features and classifiers, (iii) integration of visual modules, and (iv) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.

[1]  Anil K. Jain,et al.  Adaptive flow orientation-based feature extraction in fingerprint images , 1995, Pattern Recognit..

[2]  Qian Huang,et al.  Quantitative methods of evaluating image segmentation , 1995, Proceedings., International Conference on Image Processing.

[3]  Jianchang Mao,et al.  A comparative study of different classifiers for handprinted character recognition , 1994 .

[4]  Hazem M. Hajj,et al.  Machine vision system for high-speed discrete parts inspection , 1995, Optical Engineering Midwest.

[5]  Glenn Beheim,et al.  Fiber-optic projected-fringe digital interferometry , 1990 .

[6]  Galina L. Rogova,et al.  Combining the results of several neural network classifiers , 1994, Neural Networks.

[7]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[8]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[9]  Anil K. Jain,et al.  39 Dimensionality and sample size considerations in pattern recognition practice , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[10]  G.M. Quenot,et al.  A reconfigurable compute engine for real-time vision automata prototyping , 1994, Proceedings of IEEE Workshop on FPGA's for Custom Computing Machines.

[11]  Jack Perkins,et al.  Pattern recognition in practice , 1980 .

[12]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[13]  Anil K. Jain,et al.  Edge detection and labeling by fusion of intensity and range images , 1992, Defense, Security, and Sensing.

[14]  Daniel G. Bobrow,et al.  The Role of Intelligent Systems in the National Information Infrastructure , 1995, AI Mag..

[15]  Anil K. Jain,et al.  Goal-Directed Evaluation of Binarization Methods , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Philip Kahn Building blocks for computer vision systems , 1993, IEEE Expert.

[17]  A. K. Jain,et al.  A study of the invariance properties of textural features in SAR images , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[18]  Jack Hollingum,et al.  Machine Vision: The Eyes of Automation , 1985 .

[19]  Nicholas Negroponte,et al.  Being Digital , 1995 .

[20]  Azriel Rosenfeld,et al.  Vision Engineering: Designing Computer Vision Systems , 1993, Handbook of Pattern Recognition and Computer Vision.

[21]  Jon Atli Benediktsson,et al.  Consensus theoretic classification methods , 1992, IEEE Trans. Syst. Man Cybern..

[22]  N. Ratha,et al.  Adaptive � ow orientation based feature extraction in ngerprint images � , 1995 .

[23]  Anil K. Jain,et al.  Markov random fields : theory and application , 1993 .

[24]  Anil K. Jain,et al.  Algorithms for feature selection: An evaluation , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[25]  Sharath Pankanti,et al.  Integrating Vision Modules: Stereo, Shading, Grouping, and Line Labeling , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[27]  P.M. Athanas,et al.  Real-Time Image Processing on a Custom Computing Platform , 1995, Computer.

[28]  B. Miller,et al.  Vital signs of identity [biometrics] , 1994, IEEE Spectrum.

[29]  Anil K. Jain,et al.  Recognizing geons from superquadrics fitted to range data , 1992, Image Vis. Comput..

[30]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[31]  Dov Dori,et al.  Quantitative performance evaluation of thinning algorithms under noisy conditions , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[33]  Shin'ichiro Okazaki,et al.  A 64 parallel integrated memory array processor and a 30 GIPS real-time vision system , 1995, Proceedings of Conference on Computer Architectures for Machine Perception.

[34]  Chitra Dorai,et al.  Optimal registration of multiple range views , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[35]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[36]  Qian Huang,et al.  Foreground/background segmentation of color images by integration of multiple cues , 1995, Proceedings., International Conference on Image Processing.

[37]  H.I. Bozma,et al.  A Game-Theoretic Approach to Integration of Modules , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  The Federal high performance computing program - Sept. 89 , 1989 .

[39]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[40]  Anil K. Jain,et al.  Clustering techniques: The user's dilemma , 1976, Pattern Recognit..

[41]  Kagan Tumer,et al.  Analysis of decision boundaries in linearly combined neural classifiers , 1996, Pattern Recognit..

[42]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[43]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[44]  Luc M. Vincent,et al.  Benchmarking page segmentation algorithms , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Anil K. Jain,et al.  Image retrieval using color and shape , 1996, Pattern Recognit..

[47]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[48]  Theodosios Pavlidis,et al.  Why progress in machine vision is so slow , 1992, Pattern Recognit. Lett..

[49]  Kim L. Boyer,et al.  Integration, Inference, and Management of Spatial Information Using Bayesian Networks: Perceptual Organization , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[51]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[52]  Allan D. Jepson,et al.  A lattice framework for integrating vision modules , 1992, IEEE Trans. Syst. Man Cybern..

[53]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.