Shrinkage of plain and silica fume cement concrete under hot weather

Supplementary cementing materials (SCMs) are widely used these days to improve the durability of concrete. Silica fume has gained world wide acceptance due to its high pozzolanic reactivity compared to other SCMs. While silica fume cement concrete has several advantages over other blended cement concretes its main draw back is increased plastic and drying shrinkage, particularly under hot weather conditions. This paper reports results of a study conducted to assess these properties of plain and silica fume cement concrete specimens cast and cured in the field under hot weather conditions. The effect of specimen size and method of curing on plastic and drying shrinkage and some of the mechanical properties of silica fume and plain cement concrete specimens were evaluated. Results indicated that the type of cement significantly affected both the plastic and drying shrinkage of concrete in that these values in the silica fume cement concrete specimens were more than those in the plain cement concrete specimens. As expected, the shrinkage strains in both the plain and silica fume cement concrete specimens cured by continuous water-ponding were less than that in similar concrete specimens cured by covering them with wet burlap. The results point to the importance of selecting a good quality silica fume and good curing for avoiding cracking of concrete due to plastic and drying shrinkage, particularly under hot weather conditions.