Thermodynamics of a gas of hadrons with attractive and repulsive interactions within an S -matrix formalism

We report the effect of including repulsive interactions on various thermodynamic observables calculated using a S-matrix based Hadron Resonance Gas (HRG) model to already available corresponding results with only attractive interactions [A. Dash, S. Samanta, and B. Mohanty, Phys. Rev. C 97, 055208 (2018)]. The attractive part of the interaction is calculated by parameterizing the two body phase shifts using K-matrix formalism while the repulsive part is included by fitting to the experimental phase shifts which carry the information about the nature of the interaction. We find that the bulk thermodynamic variables for a gas of hadrons such as energy density, pressure, entropy density, speed of sound and specific heat are suppressed by the inclusion of repulsive interactions and are more pronounced for second and higher order correlations and fluctuations, particularly for the observables $\chi^2_Q$, $\chi^2_B-\chi^4_B$ and $C_{BS}$ in the present model. We find a good agreement between lattice QCD simulations and the present model for $C_{BS}$. We have also computed two leading order Fourier coefficients of the imaginary part of the first order baryonic susceptibility at imaginary baryon chemical potential within this model and compared them with the corresponding results from lattice. Additionally, assuming that the value of interacting pressure versus temperature for a gas of hadrons calculated in S-matrix formalism is same as that from a van der Waals HRG (VDWHRG) model, we have quantified the attractive and repulsive interactions in our model in terms of attractive and repulsive parameters used in the VDWHRG model. The values of parameters thus obtained are $a=1.54\pm 0.064$ GeV $\text{fm}^{3}$ and $r=0.81\pm 0.014$ fm.

[1]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[2]  H. Stoecker,et al.  Monte Carlo approach to the excluded-volume hadron resonance gas in grand canonical and canonical ensembles , 2018, Physical Review C.

[3]  B. Mohanty,et al.  Interacting hadron resonance gas model in K-matrix formalism , 2018, 1802.04998.

[4]  A. Andronic,et al.  Decoding the phase structure of QCD via particle production at high energy , 2017, Nature.

[5]  K. Redlich,et al.  S-matrix analysis of the baryon electric charge correlation , 2017, 1710.02711.

[6]  B. Mohanty,et al.  Criticality in a hadron resonance gas model with the van der Waals interaction , 2017, 1709.04446.

[7]  B. Mohanty,et al.  Freezeout systematics due to the hadron spectrum , 2017, 1708.08152.

[8]  Z. Fodor,et al.  Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential , 2017, 1708.02852.

[9]  P. Petreczky,et al.  Hadron resonance gas with repulsive interactions and fluctuations of conserved charges , 2017, 1708.00879.

[10]  H. Stoecker,et al.  Multicomponent van der Waals equation of state: Applications in nuclear and hadronic physics , 2017, 1707.09215.

[11]  K. Redlich,et al.  Repulsive interactions and their effects on the thermodynamics of a hadron gas , 2017, 1703.00306.

[12]  Z. Fodor,et al.  Constraining the hadronic spectrum through QCD thermodynamics on the lattice , 2017, 1702.01113.

[13]  B. Mohanty,et al.  Freeze-out conditions in proton-proton collisions at the highest energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider , 2017 .

[14]  V. Vovchenko Equations of state for real gases on the nuclear scale , 2017, 1701.06524.

[15]  G. Gagliardi,et al.  Higher order quark number fluctuations via imaginary chemical potentials in $N_f=2+1$ QCD , 2016, 1611.08285.

[16]  H. Stocker,et al.  Excluded-volume effects for a hadron gas in Yang-Mills theory , 2016, 1611.05872.

[17]  H. Stoecker,et al.  New scenarios for hard-core interactions in a hadron resonance gas , 2016, 1610.08753.

[18]  J. Rademacker,et al.  Review of Multibody Charm Analyses , 2016 .

[19]  S. Ghosh,et al.  Centrality dependence of chemical freeze-out parameters from net-proton and net-charge fluctuations using a hadron resonance gas model , 2016, 1609.05318.

[20]  H. Stoecker,et al.  van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD. , 2016, Physical review letters.

[21]  R. Workman,et al.  Partial-Wave Analysis of Nucleon-Nucleon Elastic Scattering Data , 2016, 1609.01741.

[22]  J. Kapusta,et al.  Net baryon fluctuations from a crossover equation of state , 2016, 1609.00398.

[23]  K. Morita,et al.  Effects of ρ-meson width on pion distributions in heavy-ion collisions , 2016, 1608.06817.

[24]  H. Stoecker,et al.  Flavor-dependent eigenvolume interactions in a hadron resonance gas , 2016, Nuclear Physics A.

[25]  H. Stoecker,et al.  Examination of the sensitivity of the thermal fits to heavy-ion hadron yield data to the modeling of the eigenvolume interactions , 2016, 1606.06218.

[26]  K. Zalewski,et al.  Thermodynamics of Van der Waals Fluids with quantum statistics , 2016, 1605.09686.

[27]  Z. Fodor,et al.  Fluctuations and correlations in high temperature QCD , 2015, 1507.04627.

[28]  V. Vovchenko,et al.  Scaled variance, skewness, and kurtosis near the critical point of nuclear matter , 2015, 1506.05763.

[29]  H. Mishra,et al.  Dissipative properties of hot and dense hadronic matter in an excluded-volume hadron resonance gas model , 2015, 1506.04613.

[30]  J. Kapusta,et al.  Baryon number fluctuations from a crossover equation of state compared to heavy-ion collision measurements in the beam energy range √{s NN }=7.7 to 200 GeV , 2015, 1506.03408.

[31]  V. Vovchenko,et al.  Van der Waals Equation of State with Fermi Statistics for Nuclear Matter , 2015, 1504.01363.

[32]  V. Vovchenko,et al.  Particle number fluctuations for the van der Waals equation of state , 2015, 1501.03785.

[33]  V. Vovchenko,et al.  Hadron Resonance Gas Equation of State from Lattice QCD , 2014, 1412.5478.

[34]  J. Kapusta,et al.  Matching excluded-volume hadron-resonance gas models and perturbative QCD to lattice calculations , 2014, 1404.7540.

[35]  S. Sharma,et al.  Additional strange hadrons from QCD thermodynamics and strangeness freezeout in heavy ion collisions. , 2014, Physical review letters.

[36]  A. Sciarra,et al.  Nature of the Roberge-Weiss transition in N f = 2 QCD with Wilson fermions , 2014, 1402.0838.

[37]  S. Ghosh,et al.  Fluctuations and correlations of conserved charges in an excluded-volume hadron resonance gas model , 2013, 1310.2793.

[38]  Z. Fodor,et al.  Full result for the QCD equation of state with 2+1 flavors , 2013, 1309.5258.

[39]  Z. Fodor,et al.  Is there a flavor hierarchy in the deconfinement transition of QCD? , 2013, Physical review letters.

[40]  Jinghua Fu,et al.  Higher moments of net-proton multiplicity distributions in heavy ion collisions at chemical freeze-out , 2013 .

[41]  S. Sharma,et al.  Strangeness at high temperatures: from hadrons to quarks. , 2013, Physical review letters.

[42]  A. Nogga,et al.  Hyperon-nucleon interaction at next-to-leading order in chiral effective field theory , 2013, 1304.5339.

[43]  M. Prakash,et al.  Shear viscosity of hadrons with K-matrix cross sections , 2013, 1307.4681.

[44]  V. Begun,et al.  Hadron-resonance gas at freeze-out: Reminder on the importance of repulsive interactions , 2012, 1208.4107.

[45]  R. Workman,et al.  Parameterization dependence of T matrix poles and eigenphases from a fit to $\pi$N elastic scattering data , 2012, 1204.2277.

[46]  C. DeTar,et al.  Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model , 2012, 1203.0784.

[47]  T. Shears,et al.  The Standard Model , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  A. Andronic,et al.  Interacting hadron resonance gas meets lattice QCD , 2012, 1201.0693.

[49]  Z. Fodor,et al.  Fluctuations of conserved charges at finite temperature from lattice QCD , 2011, 1112.4416.

[50]  S. K. Tiwari,et al.  Description of Hot and Dense Hadron Gas Properties in a New Excluded-Volume model , 2011, 1111.2406.

[51]  Xiaofeng Luo,et al.  Scale for the Phase Diagram of Quantum Chromodynamics , 2011, Science.

[52]  R. Kaminski,et al.  The pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV , 2011, 1102.2183.

[53]  C. DeTar,et al.  Equation of state in (2+1) flavor QCD at hightemperatures , 2009, Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018).

[54]  F. Sanfilippo,et al.  Thermodynamics of two flavor QCD from imaginary chemical potentials , 2009, 0904.1400.

[55]  A. Andronic,et al.  Thermal hadron production in relativistic nuclear collisions: The hadron mass spectrum, the horn, and the QCD phase transition , 2008, 0812.1186.

[56]  P. Forcrand,et al.  The chiral critical point of Nf = 3 QCD at finite density to the order (μ/T)4 , 2008, 0808.1096.

[57]  Sourendu Gupta,et al.  QCD at finite chemical potential with six time slices , 2008, 0806.2233.

[58]  Johanna Stachel,et al.  The quest for the quark–gluon plasma , 2007, Nature.

[59]  Liang-Kai Wu,et al.  Phase structure of lattice QCD with two flavors of Wilson quarks at finite temperature and chemical potential , 2006, hep-lat/0611035.

[60]  H. Polinder,et al.  Hyperon–nucleon interactions—a chiral effective field theory approach , 2006, nucl-th/0605050.

[61]  A. Andronic,et al.  Hadron production in central nucleus-nucleus collisions at chemical freeze-out , 2005, nucl-th/0511071.

[62]  F. Becattini,et al.  Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions , 2005, hep-ph/0511092.

[63]  J. Randrup,et al.  Baryon-strangeness correlations: a diagnostic of strongly interacting matter. , 2005, Physical review letters.

[64]  Abdel Nasser Tawfik,et al.  Thermodynamics at Non-Zero Baryon Number Density: A Comparison of Lattice and Hadron Resonance Gas Model Calculations , 2003, hep-ph/0306208.

[65]  M. Lombardo,et al.  Finite density QCD via an imaginary chemical potential , 2002, hep-lat/0209146.

[66]  P. Forcrand,et al.  The QCD phase diagram for small densities from imaginary chemical potential , 2002, hep-lat/0205016.

[67]  O. Kaczmarek,et al.  QCD thermal phase transition in the presence of a small chemical potential , 2002, hep-lat/0204010.

[68]  P. Braun-Munzinger,et al.  Hadron production in Au - Au collisions at RHIC , 2001, hep-ph/0105229.

[69]  F. Becattini,et al.  Features of particle multiplicities and strangeness production in central heavy ion collisions between 1.7A and 158A GeV/c , 2000, hep-ph/0002267.

[70]  J. Cleymans,et al.  Chemical and thermal freezeout parameters from 1-A/GeV to 200-A/GeV , 1999, nucl-th/9903063.

[71]  P. Braun-Munzinger,et al.  Chemical equilibration in Pb+Pb collisions at the SPS , 1999, nucl-th/9903010.

[72]  M. Gorenstein,et al.  The analysis of particle multiplicities in Pb+Pb collisions at CERN SPS within hadron gas models , 1998, nucl-th/9808012.

[73]  W. Greiner,et al.  Excluded volume hadron gas model for particle number ratios in A+A collisions , 1997, nucl-th/9711062.

[74]  Joseph Cugnon,et al.  Simple parametrization of cross-sections for nuclear transport studies up to the GeV range , 1996 .

[75]  J. Cleymans,et al.  Thermal hadron production in Si-Au collisions , 1996, nucl-th/9603004.

[76]  Yang,et al.  Freeze-out conditions and pion spectrum in heavy-ion collisions. , 1995, Physical review. C, Nuclear physics.

[77]  N. Xu,et al.  Thermal equilibration and expansion in nucleus-nucleus collisions at the AGS , 1994, nucl-th/9410026.

[78]  J. Cleymans,et al.  Excluded volume effect and the quark-hadron phase transition , 1993 .

[79]  R. Venugopalan,et al.  Thermal properties of interacting hadrons , 1992 .

[80]  Roper,et al.  Partial-wave analysis of K+-nucleon scattering. , 1992, Physical review. D, Particles and fields.

[81]  H. Stöcker,et al.  Excluded volume effect for the nuclear matter equation of state , 1991 .

[82]  Shang‐keng Ma,et al.  S-Matrix Formulation of Statistical Mechanics , 1969 .

[83]  W. Marsden I and J , 2012 .

[84]  H. Hees,et al.  Statistical Physics , 2004 .

[85]  E. Klempt,et al.  Partial wave analysis in K matrix formalism , 1995 .

[86]  L. Landau,et al.  statistical-physics-part-1 , 1958 .