A combined XFEM–damage mechanics approach for concrete crack propagation

Abstract This paper presents a crack model that couples the benefits of the damage mechanics approach and the extended finite element method (XFEM). A crack-tracking technique is developed to propagate the crack path along a single row of finite elements as a function of the stress-based nonlocal method. The level sets are computed to predict the crack path, and the path is corrected with the use of continuum damage mechanics. Once a certain level of damage is reached inside an element, the previously-computed level sets are used to apply the XFEM formulation. A cohesive XFEM formulation is used to transfer energy dissipation from the damage mechanics approach to the XFEM model. Using numerous test cases, it is shown that the model is mesh independent and that it removes the spurious stress transfer exhibited by continuum damage models. Various transition damage criteria are compared, and the optimal one is determined.

[1]  Silvio Valente,et al.  Is mode II fracture energy a real material property , 1993 .

[2]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[3]  Gilles Pijaudier-Cabot,et al.  Measurement of Characteristic Length of Nonlocal Continuum , 1989 .

[4]  Victor E. Saouma,et al.  Concrete Fracture Process Zone Characterization with Fiber Optics , 2001 .

[5]  M. Jirásek,et al.  ANALYSIS OF ROTATING CRACK MODEL , 1998 .

[6]  Frédéric Feyel,et al.  A finite element approach coupling a continuous gradient damage model and a cohesive zone model within the framework of quasi-brittle failure , 2012 .

[7]  Wam Marcel Brekelmans,et al.  A continuum approach to brittle and fatigue damage: Theory and numerical procedures , 1993 .

[8]  H. Reinhardt,et al.  A practical testing approach to determine mode II fracture energy GIIF for concrete , 2000 .

[9]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[10]  L. J. Sluys,et al.  From continuous to discontinuous failure in a gradient-enhanced continuum damage model , 2003 .

[11]  G. Meschke,et al.  Energy-based modeling of cohesive and cohesionless cracks via X-FEM , 2007 .

[12]  F. Dufour,et al.  Stress-based nonlocal damage model , 2011 .

[13]  M. B. Nooru-Mohamed Mixed-mode fracture of concrete : An experimental approach , 1992 .

[14]  Milan Jirásek,et al.  Embedded crack model. Part II: combination with smeared cracks , 2001 .

[15]  Alfredo Edmundo Huespe,et al.  Crack Models with Embedded Discontinuities , 2011 .

[16]  L. Kachanov,et al.  Rupture Time Under Creep Conditions , 1999 .

[17]  Stefano Mariani,et al.  An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation , 2007 .

[18]  Silvio Valente,et al.  Experimental and Numerical Fracture Modelling of a Gravity Dam , 1994, SP-143: New Experimental Techniques for Evaluating Concrete Material & Structural Performance.

[19]  Faouzi Ghrib,et al.  Nonlinear Behavior of Concrete Dams Using Damage Mechanics , 1995 .

[20]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[21]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[22]  Pierre Léger,et al.  APPLICATION OF NLFM MODELS TO PREDICT CRACKING IN CONCRETE GRAVITY DAMS , 1994 .

[23]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[24]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[25]  Z. Bažant,et al.  Nonlocal microplane model for fracture, damage, and size effect in structures , 1990 .

[26]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[27]  Qingbo Cai,et al.  Finite element modelling of cracking in concrete gravity dams , 2008 .

[28]  J. Rots Computational modeling of concrete fracture , 1988 .

[29]  Eugen Brühwiler,et al.  Failure of Dam concrete subjected to seismic Loading Conditions , 1990 .

[30]  Z. Bažant,et al.  Determination of Fracture Energy from Size Effect and Brittleness Number , 1987 .

[31]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[32]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[33]  Milan Jirásek,et al.  Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models , 2008 .

[34]  Anil K. Chopra,et al.  The earthquake experience at koyna dam and stresses in concrete gravity dams , 1972 .

[35]  P. A. Pfeiffer,et al.  Shear fracture tests of concrete , 1986 .

[36]  Y. R. Rashid,et al.  Ultimate strength analysis of prestressed concrete pressure vessels , 1968 .

[37]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[38]  Anthony R. Ingraffea Computational Fracture Mechanics , 2007 .

[39]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .