POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end

[1]  T. Lange,et al.  DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion , 2005, Nature Cell Biology.

[2]  J. Shay,et al.  Telomere-end processing the terminal nucleotides of human chromosomes. , 2005, Molecular cell.

[3]  C. Harris,et al.  POT1 and TRF2 Cooperate To Maintain Telomeric Integrity , 2005, Molecular and Cellular Biology.

[4]  T. Veldman,et al.  Loss of hPot1 Function Leads to Telomere Instability and a cut-like Phenotype , 2004, Current Biology.

[5]  T. Cech,et al.  Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection , 2004, Nature Structural &Molecular Biology.

[6]  J. Campisi,et al.  TIN2 Mediates Functions of TRF2 at Human Telomeres* , 2004, Journal of Biological Chemistry.

[7]  Tatiana Nikitina,et al.  Closed chromatin loops at the ends of chromosomes , 2004, The Journal of cell biology.

[8]  B. Chait,et al.  POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. , 2004, Genes & development.

[9]  A. Smogorzewska,et al.  Regulation of telomerase by telomeric proteins. , 2004, Annual review of biochemistry.

[10]  Jun Qin,et al.  PTOP interacts with POT1 and regulates its localization to telomeres , 2004, Nature Cell Biology.

[11]  John M Sedivy,et al.  Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). , 2004, Molecular cell.

[12]  D. Loayza,et al.  DNA Binding Features of Human POT1 , 2004, Journal of Biological Chemistry.

[13]  M. Mann,et al.  ERCC1/XPF removes the 3' overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. , 2003, Molecular cell.

[14]  N. Carter,et al.  A DNA damage checkpoint response in telomere-initiated senescence , 2003, Nature.

[15]  T. Lange,et al.  DNA Damage Foci at Dysfunctional Telomeres , 2003, Current Biology.

[16]  M. Serafini,et al.  Plasma antioxidants from chocolate , 2003, Nature.

[17]  T. Lange,et al.  POT1 as a terminal transducer of TRF1 telomere length control , 2003, Nature.

[18]  D. Wynford‐Thomas,et al.  Extensive allelic variation and ultrashort telomeres in senescent human cells , 2003, Nature Genetics.

[19]  P. Baumann,et al.  Human Pot1 (Protection of Telomeres) Protein: Cytolocalization, Gene Structure, and Alternative Splicing , 2002, Molecular and Cellular Biology.

[20]  A. Jauch,et al.  DNA Ligase IV-Dependent NHEJ of Deprotected Mammalian Telomeres in G1 and G2 , 2002, Current Biology.

[21]  J. Griffith,et al.  T‐loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang , 2001, The EMBO journal.

[22]  S M Bailey,et al.  Strand-Specific Postreplicative Processing of Mammalian Telomeres , 2001, Science.

[23]  P. Baumann,et al.  Pot1, the Putative Telomere End-Binding Protein in Fission Yeast and Humans , 2001, Science.

[24]  B. Lehnert,et al.  DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Griffith,et al.  TRF1 binds a bipartite telomeric site with extreme spatial flexibility , 1999, The EMBO journal.

[26]  M. Hemann,et al.  G-strand overhangs on telomeres in telomerase-deficient mouse cells. , 1999, Nucleic acids research.

[27]  J. Griffith,et al.  Mammalian Telomeres End in a Large Duplex Loop , 1999, Cell.

[28]  D. Broccoli,et al.  p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. , 1999, Science.

[29]  W. de Laat,et al.  DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. , 1998, Genes & development.

[30]  Bas van Steensel,et al.  TRF2 Protects Human Telomeres from End-to-End Fusions , 1998, Cell.

[31]  J. Langmore,et al.  Long G Tails at Both Ends of Human Chromosomes Suggest a C Strand Degradation Mechanism for Telomere Shortening , 1997, Cell.

[32]  L. Hartwell,et al.  Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint , 1995, Molecular and cellular biology.

[33]  C Roskelley,et al.  A biomarker that identifies senescent human cells in culture and in aging skin in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Steitz,et al.  Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. , 1992, The EMBO journal.