Oxidation of Al-bearing III-V materials: A review of key progress

Since the discovery of III-V oxidation by Dallesasse and Holonyak in 1989, significant progress has been made both technically and commercially in the use of oxides in compound semiconductor devices. Devices ranging from lasers to transistors have been fabricated that capitalize on the process-induced modification of refractive index and conductivity, allowing control of the two carriers of information in opto-electronic systems—the photon and the electron. Of particular note has been the use of oxidation for the fabrication of high-speed vertical-cavity surface-emitting lasers, which have extensive use in optical data links found in enterprise networks, data centers, and supercomputing applications. The discovery of III-V oxidation and key technical milestones in the fabrication of photonic and electronic devices that use oxidation are reviewed.

[1]  Patrick Fay,et al.  Electrical properties of inalp native oxides for metal-oxide-semiconductor device applications , 2004 .

[2]  M. G. Norton,et al.  Oxidation Kinetics of AlN Powder , 1998 .

[3]  VOLUME EXCITATION OF AN ULTRATHIN SINGLE‐MODE CdSe LASER , 1966 .

[4]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation , 1995 .

[5]  H. Stumpf,et al.  Thermal Transformations of Aluminas and Alumina Hydrates - Reaction with 44% Technical Acid. , 1950 .

[6]  F. A. Kish,et al.  Native‐oxide coupled‐stripe AlyGa1−yAs‐GaAs‐InxGa1−xAs quantum well heterostructure lasers , 1991 .

[7]  J. P. Harbison,et al.  Low threshold electrically pumped vertical cavity surface emitting microlasers , 1989, Annual Meeting Optical Society of America.

[8]  J. Sarathy,et al.  Low-threshold continuous-wave surface emitting lasers with etched void confinement , 1994, IEEE Photonics Technology Letters.

[9]  Kent D. Choquette,et al.  Wet oxidation of AlGaAs: the role of hydrogen , 1997 .

[10]  M. R. Krames,et al.  Long wavelength (λ∼1.5 μm) native‐oxide‐defined InAlAs‐InP‐InGaAsP quantum well heterostructure laser diodes , 1994 .

[11]  G. Snider,et al.  Residual arsenic site in oxidized AlxGa1−xAs (x=0.96) , 2001 .

[12]  N. Pan,et al.  GaAs MOSFET using InAlP native oxide as gate dielectric , 2004, IEEE Electron Device Letters.

[13]  Kenichi Iga,et al.  Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure , 1995 .

[14]  H. Hatakeyama,et al.  Highly Reliable High-Speed 1.1- $\mu$m-Range VCSELs With InGaAs/GaAsP-MQWs , 2010, IEEE Journal of Quantum Electronics.

[15]  R. Chelakara,et al.  An InAlAs/InGaAs metal‐oxide‐semiconductor field effect transistor using the native oxide of InAlAs as a gate insulation layer , 1996 .

[16]  B. E. Hammons,et al.  ORIGIN OF THE TIME DEPENDENCE OF WET OXIDATION OF ALGAAS , 1999 .

[17]  Fred A. Kish,et al.  Native oxide stabilization of AlAs‐GaAs heterostructures , 1991 .

[18]  Nick Holonyak,et al.  AlxGa1−xAs–GaAs metal–oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs , 1995 .

[19]  P. Fay,et al.  Enhancement-Mode Pseudomorphic $\hbox{In}_{0.22} \hbox{Ga}_{0.78}\hbox{As}$-Channel MOSFETs With Ultrathin InAlP Native Oxide Gate Dielectric and a Cutoff Frequency of 60 GHz , 2010, IEEE Electron Device Letters.

[20]  Milton Feng,et al.  Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission , 2011 .

[21]  N. Holonyak,et al.  IR‐red GaAs‐AlAs superlattice laser monolithically integrated in a yellow‐gap cavity , 1981 .

[22]  Hong Q. Hou,et al.  Wet oxidation of AlxGa1−xAs: Temporal evolution of composition and microstructure and the implications for metal-insulator-semiconductor applications , 1997 .

[23]  S. Takenouchi,et al.  Phase relations in the system of Al 2 O 3 -; h 2 O at high temperatures and pressures , 1959 .

[24]  Jing Zhang,et al.  Fabrication and Performance of 0.25-$\mu$m Gate Length Depletion-Mode GaAs-Channel MOSFETs With Self-Aligned InAlP Native Oxide Gate Dielectric , 2008, IEEE Electron Device Letters.

[25]  C. Chang-Hasnain,et al.  Thermal oxidation of AlGaAs: modeling and process control , 2003 .

[26]  N. Holonyak,et al.  VOLUME EXCITATION OF AN ULTRATHIN CONTINUOUS‐WAVE CdSe LASER AT 6900 Å OUTPUT , 1967 .

[27]  N. El-Zein,et al.  Native‐oxide‐defined coupled‐stripe AlxGa1−xAs‐GaAs quantum well heterostructure lasers , 1991 .

[28]  A. Laubengayer,et al.  A Hydrothermal Study of Equilibria in the System Alumina—Water1 , 1943 .

[29]  W. Fyfe,et al.  Equilibrium dehydration of diaspore at low temperatures , 1964 .

[30]  Friedhelm Hopfer,et al.  32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL , 2009 .

[31]  D. Scifres,et al.  Highly collimated laser beams from electrically pumped SH GaAs/GaAlAs distributed−feedback lasers , 1975 .

[32]  F. C. Frary Adventures with Alumina. Medal Address. , 1946 .

[33]  N. Holonyak,et al.  Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures , 1990 .

[34]  A. R. Sugg,et al.  Native oxide top‐ and bottom‐confined narrow stripe p‐n AlyGa1−yAs‐GaAs‐InxGa1−xAs quantum well heterostructure laser , 1993 .

[35]  E. F. Osborn,et al.  The System Al2O3-H2O , 1951, The Journal of Geology.

[36]  Milton Feng,et al.  Room temperature continuous wave operation of a heterojunction bipolar transistor laser , 2005 .

[37]  Fred A. Kish,et al.  Native‐oxide stripe‐geometry In0.5(AlxGa1−x)0.5P‐In0.5Ga0.5P heterostructure laser diodes , 1991 .

[38]  R. Dupuis,et al.  Electrical characterization of native-oxide InAlP/GaAs metal-oxide-semiconductor heterostructures using impedance spectroscopy , 2004 .

[39]  Milton Feng,et al.  Laser operation of a heterojunction bipolar light-emitting transistor , 2004 .

[40]  L. Coldren,et al.  Low threshold planarized vertical-cavity surface-emitting lasers , 1990, IEEE Photonics Technology Letters.

[41]  I. Melngailis LONGITUDINAL INJECTION‐PLASMA LASER OF InSb , 1965 .

[42]  N. Holonyak,et al.  Buried‐oxide ridge‐waveguide InAlAs‐InP‐InGaAsP (λ∼1.3 μm) quantum well heterostructure laser diodes , 1994 .

[43]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[44]  N. Holonyak,et al.  Planar native‐oxide AlxGa1−xAs‐GaAs quantum well heterostructure ring laser diodes , 1992 .

[45]  A. R. Sugg,et al.  Native oxide‐embedded AlyGa1−yAs‐GaAs‐InxGa1−xAs quantum well heterostructure lasers , 1993 .

[46]  Yu-Chia Chang,et al.  Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  D. Deppe,et al.  Native-Oxide Defined Ring Contact for Low Threshold Vertical-Cavity Lasers , 1994 .

[48]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[49]  K. Geib,et al.  Low threshold voltage vertical-cavity lasers fabricated by selective oxidation , 1994 .

[50]  Fred A. Kish,et al.  Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1−xAs , 1992 .

[51]  John E. Bowers,et al.  Laterally oxidized long wavelength CW vertical- cavity lasers , 1996 .

[52]  K. Geib,et al.  Wet thermal oxidation of AlAsSb lattice matched to InP for optoelectronic applications , 1996 .

[53]  N. Holonyak,et al.  Native‐oxide stripe‐geometry AlxGa1−xAs‐GaAs quantum well heterostructure lasers , 1991 .

[54]  F. A. Kish,et al.  Low‐threshold disorder‐defined native‐oxide delineated buried‐heterostructure AlxGa1−xAs‐GaAs quantum well lasers , 1991 .

[55]  N. Holonyak,et al.  Resonance and switching in a native‐oxide‐defined AlxGa1−xAs‐GaAs quantum‐well heterostructure laser array , 1992 .