Living on a surface: swarming and biofilm formation.

[1]  M. Simon,et al.  Chemotactic control of the two flagellar systems of Vibrio parahaemolyticus , 1990, Journal of bacteriology.

[2]  M. Silverman,et al.  Surface‐induced swarmer cell differentiation of Vibrio parahaemoiyticus , 1990, Molecular microbiology.

[3]  R. Belas,et al.  Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior , 1991, Journal of bacteriology.

[4]  M. Matsushita,et al.  Fractal morphogenesis by a bacterial cell population. , 1993, Critical reviews in microbiology.

[5]  T. Matsuyama,et al.  Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[6]  H. Lai,et al.  A cell‐surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis , 1995, Molecular microbiology.

[7]  S. Molin,et al.  Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon , 1996, Journal of bacteriology.

[8]  R. Harshey,et al.  The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Belas,et al.  Characterization of Proteus mirabilisPrecocious Swarming Mutants: Identification of rsbA, Encoding a Regulator of Swarming Behavior , 1998, Journal of bacteriology.

[10]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[11]  M. Popoff,et al.  The RcsB–RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity , 1998, Molecular microbiology.

[12]  Sandra M. Troian,et al.  The development of transient fingering patterns during the spreading of surfactant coated films , 1999 .

[13]  Leo Eberl,et al.  Surface Motility of Serratia liquefaciens MG1 , 1999, Journal of bacteriology.

[14]  G. Fraser,et al.  Swarming motility. , 1999, Current opinion in microbiology.

[15]  E. Mosekilde,et al.  The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens , 2000, Journal of mathematical biology.

[16]  C. van Delden,et al.  Swarming of Pseudomonas aeruginosa Is Dependent on Cell-to-Cell Signaling and Requires Flagella and Pili , 2000, Journal of bacteriology.

[17]  A. Czirók,et al.  Theory of periodic swarming of bacteria: application to Proteus mirabilis. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  T. Mizuno,et al.  A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC → YojN → RcsB signalling pathway implicated in capsular synthesis and swarming behaviour , 2001, Molecular microbiology.

[19]  J. Carey,et al.  Free journals for developing countries , 2002 .

[20]  L. McCarter,et al.  Vibrio parahaemolyticus scrABC, a Novel Operon Affecting Swarming and Capsular Polysaccharide Regulation , 2002, Journal of bacteriology.

[21]  G. Fraser,et al.  Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. , 2002, Microbiology.

[22]  Roseanne M. Ford,et al.  Reversal of Flagellar Rotation Is Important in Initial Attachment of Escherichia coli to Glass in a Dynamic System with High- and Low-Ionic-Strength Buffers , 2002, Applied and Environmental Microbiology.

[23]  K. Luh,et al.  Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis. , 2003, Journal of medical microbiology.

[24]  R. Losick,et al.  Swarming motility in undomesticated Bacillus subtilis , 2003, Molecular microbiology.

[25]  Søren Molin,et al.  Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.

[26]  R. Harshey,et al.  Bacterial motility on a surface: many ways to a common goal. , 2003, Annual review of microbiology.

[27]  G. O’Toole,et al.  Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1 , 2003, Journal of bacteriology.

[28]  A. Zehnder,et al.  The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. , 2003, Microbiology.

[29]  L. McCarter,et al.  Multiple Regulators Control Capsular Polysaccharide Production in Vibrio parahaemolyticus , 2003, Journal of bacteriology.

[30]  Eshwar Mahenthiralingam,et al.  Ultrastructure of Proteus mirabilis Swarmer Cell Rafts and Role of Swarming in Catheter-Associated Urinary Tract Infection , 2004, Infection and Immunity.

[31]  H. Lai,et al.  Modulation of Swarming and Virulence by Fatty Acids through the RsbA Protein in Proteus mirabilis , 2004, Infection and Immunity.

[32]  M. Surette,et al.  Metabolic differentiation in actively swarming Salmonella , 2004, Molecular microbiology.

[33]  J. Frye,et al.  Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes , 2004, Molecular microbiology.

[34]  B. Bassler,et al.  Quorum Sensing Regulates Type III Secretion in Vibrio harveyi and Vibrio parahaemolyticus , 2004, Journal of bacteriology.

[35]  P. Rather,et al.  Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis , 2004, Molecular microbiology.

[36]  G. O’Toole,et al.  SadB Is Required for the Transition from Reversible to Irreversible Attachment during Biofilm Formation by Pseudomonas aeruginosa PA14 , 2004, Journal of bacteriology.

[37]  S. Lory,et al.  A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. , 2004, Developmental cell.

[38]  G. Pessi,et al.  Positive Control of Swarming, Rhamnolipid Synthesis, and Lipase Production by the Posttranscriptional RsmA/RsmZ System in Pseudomonas aeruginosa PAO1 , 2004, Journal of bacteriology.

[39]  J. Michiels,et al.  Quorum sensing and swarming migration in bacteria. , 2004, FEMS microbiology reviews.

[40]  L. McCarter,et al.  The Complex Flagellar Torque Generator of Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[41]  U. Römling,et al.  GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility , 2004, Molecular microbiology.

[42]  D. Tifrea,et al.  A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Zorzano,et al.  Reaction-diffusion model for pattern formation in E. coli swarming colonies with slime. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  M. Graham,et al.  Transport and collective dynamics in suspensions of confined swimming particles. , 2005, Physical review letters.

[45]  G. O’Toole,et al.  Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[46]  P. Rather Swarmer cell differentiation in Proteus mirabilis. , 2005, Environmental microbiology.

[47]  J. Connolly,et al.  A Three-Component Regulatory System Regulates Biofilm Maturation and Type III Secretion in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[48]  P. Williams,et al.  The RssAB Two-Component Signal Transduction System in Serratia marcescens Regulates Swarming Motility and Cell Envelope Architecture in Response to Exogenous Saturated Fatty Acids , 2005, Journal of bacteriology.

[49]  I. Tuval,et al.  Bacterial swimming and oxygen transport near contact lines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Porwollik,et al.  Sensing wetness: a new role for the bacterial flagellum , 2005, The EMBO journal.

[51]  F. Lépine,et al.  Production of rhamnolipids by Pseudomonas aeruginosa , 2005, Applied Microbiology and Biotechnology.

[52]  S. Lory,et al.  A novel two‐component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes , 2004, Molecular microbiology.

[53]  U. Römling,et al.  Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae , 2005, Cellular and Molecular Life Sciences CMLS.

[54]  R. Suvanasuthi,et al.  The Ability of Proteus mirabilis To Sense Surfaces and Regulate Virulence Gene Expression Involves FliL, a Flagellar Basal Body Protein , 2005, Journal of bacteriology.

[55]  Blaise R. Boles,et al.  Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms , 2005, Molecular microbiology.

[56]  D. Chopp,et al.  The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional , 2006, Molecular microbiology.

[57]  K. Braeken,et al.  Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli , 2006, Proceedings of the National Academy of Sciences.

[58]  N. Dowidar,et al.  Identification of New Flagellar Genes of Salmonella enterica Serovar Typhimurium , 2006, Journal of bacteriology.

[59]  R. Harshey,et al.  A mechanical role for the chemotaxis system in swarming motility , 2006, Molecular microbiology.

[60]  U. Römling,et al.  The PilZ Domain Is a Receptor for the Second Messenger c-di-GMP , 2006, Journal of Biological Chemistry.

[61]  M. Parsek,et al.  Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? , 2006, Cellular microbiology.

[62]  U. Jenal,et al.  Mechanisms of cyclic-di-GMP signaling in bacteria. , 2006, Annual review of genetics.

[63]  S. Lory,et al.  Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  L. McCarter,et al.  Three New Regulators of Swarming in Vibrio parahaemolyticus , 2006, Journal of bacteriology.

[65]  U. Römling,et al.  Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium , 2006, Molecular microbiology.

[66]  P. Rather,et al.  A Novel Gene Involved in Regulating the Flagellar Gene Cascade in Proteus mirabilis , 2006, Journal of bacteriology.

[67]  C. Hughes,et al.  Salmonella typhimurium flhE, a conserved flagellar regulon gene required for swarming. , 2007, Microbiology.

[68]  T. Tolker-Nielsen,et al.  Multiple Roles of Biosurfactants in Structural Biofilm Development by Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[69]  Dale Kaiser,et al.  Bacterial Swarming: A Re-examination of Cell-Movement Patterns , 2007, Current Biology.

[70]  L. McCarter,et al.  ScrG, a GGDEF-EAL Protein, Participates in Regulating Swarming and Sticking in Vibrio parahaemolyticus , 2007, Journal of bacteriology.

[71]  G. O’Toole,et al.  Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. , 2007, Research in microbiology.

[72]  G. O’Toole,et al.  SadC Reciprocally Influences Biofilm Formation and Swarming Motility via Modulation of Exopolysaccharide Production and Flagellar Function , 2007, Journal of bacteriology.

[73]  M. McClelland,et al.  The RcsCDB Signaling System and Swarming Motility in Salmonella enterica Serovar Typhimurium: Dual Regulation of Flagellar and SPI-2 Virulence Genes , 2007, Journal of bacteriology.

[74]  P. Rather,et al.  Regulation of flhDC expression in Proteus mirabilis. , 2007, Research in microbiology.

[75]  H. Berg,et al.  The Wetting Agent Required for Swarming in Salmonella enterica Serovar Typhimurium Is Not a Surfactant , 2007, Journal of bacteriology.

[76]  Julien Tremblay,et al.  Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. , 2007, Environmental microbiology.

[77]  U. Römling,et al.  Role of EAL-Containing Proteins in Multicellular Behavior of Salmonella enterica Serovar Typhimurium , 2007, Journal of bacteriology.

[78]  Vijay Narayan,et al.  Long-Lived Giant Number Fluctuations in a Swarming Granular Nematic , 2007, Science.

[79]  Frederick M. Ausubel,et al.  BifA, a Cyclic-Di-GMP Phosphodiesterase, Inversely Regulates Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14 , 2007, Journal of bacteriology.

[80]  G. O’Toole,et al.  Inverse Regulation of Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14 , 2007, Journal of bacteriology.

[81]  P. Rather,et al.  Characterization of a Novel Gene, wosA, Regulating FlhDC Expression in Proteus mirabilis , 2008, Journal of bacteriology.

[82]  Peter C. Fineran,et al.  Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia. , 2008, Environmental microbiology.

[83]  Michelle D. Brazas,et al.  Swarming of Pseudomonas aeruginosa Is a Complex Adaptation Leading to Increased Production of Virulence Factors and Antibiotic Resistance , 2008, Journal of bacteriology.

[84]  J. Shu,et al.  Regulation of Swarming Motility and flhDCSm Expression by RssAB Signaling in Serratia marcescens , 2008, Journal of bacteriology.

[85]  C. Harwood,et al.  Identification of FleQ from Pseudomonas aeruginosa as a c‐di‐GMP‐responsive transcription factor , 2008, Molecular microbiology.

[86]  E. Greenberg,et al.  Vibrio parahaemolyticus ScrC Modulates Cyclic Dimeric GMP Regulation of Gene Expression Relevant to Growth on Surfaces , 2007, Journal of bacteriology.

[87]  K. Fukui,et al.  Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids. , 2008, FEMS microbiology letters.

[88]  B. Scharf,et al.  FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica , 2008, Molecular microbiology.

[89]  A. Wolfe,et al.  Get the Message Out: Cyclic-Di-GMP Regulates Multiple Levels of Flagellum-Based Motility , 2007, Journal of bacteriology.

[90]  Nicholas M. Luscombe,et al.  Complete Genome Sequence of Uropathogenic Proteus mirabilis, a Master of both Adherence and Motility , 2008, Journal of bacteriology.