Multi-Zone Quasi-Dimensional Combustion Models for Spark-Ignition Engines

The present work aims at improving the predictive capabilities of quasi-dimensional combustion models for fast and accurate automated design of spark engines. The models are based on mass and energy conservation principles supplemented by sub models based on experimental correlations. Here, we improve the accuracy of the classical two-zone model by means of two successive modifications. First, we generate a three-zone model by introducing a reacting zone near the walls. In the third zone, the gases burn at a lower temperature than in the main reacting zone, due to heat losses to the walls. Secondly, a multi-zone model is built by dynamically adding new reacting zones at given crank-angle intervals. The use of multiple zones allows to take into account temperature and concentrations gradients in the flame. To validate our models, the energy release rates and pressures time histories predicted by the three-zone and by the multi-zone models are compared to experimental data and to the standard two-zone approach for several operating conditions.

[1]  Nicolas Bordet Modélisation 0D/1D de la combustion diesel : du mode conventionnel au mode homogène , 2011 .

[2]  I. I. Vibe Brennverlauf und Kreisprozeß von Verbrennungsmotoren , 1970 .

[3]  John B. Heywood,et al.  The Effect of Chamber Geometry on Spark-Ignition Engine Combustion , 1983 .

[4]  M. Metghalchi,et al.  Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature , 1982 .

[5]  C. R. Ferguson,et al.  A Turbulent Entrainment Model for Spark-Ignition Engine Combustion , 1977 .

[6]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[7]  Sebastian Verhelst,et al.  Multi-zone thermodynamic modelling of spark-ignition engine combustion -An overview , 2009 .

[8]  Olivier Sename,et al.  Validation and Application of a New 0D Flame/Wall Interaction Sub Model for SI Engines , 2011 .

[9]  Alain Alexandre,et al.  Modélisation thermique des moteurs - Modélisation de la combustion , 2015, Machines hydrauliques, aérodynamiques et thermiques.

[10]  Andrei Boiarciuc,et al.  Evaluation of a 0D Phenomenological SI Combustion Model , 2011 .

[11]  Ludovic Landry,et al.  Etude expérimentale des modes de combustion essence sous forte pression et forte dilution , 2009 .

[12]  日本機械学会 COMODIA 94 : proceedings of the Third International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, July 11-14, 1994, Yokohama, Japan , 1994 .

[13]  G. Woschni,et al.  EXPERIMENTAL INVESTIGATION OF THE INSTANTANEOUS HEAT TRANSFER IN THE CYLINDER OF A HIGH SPEED DIESEL ENGINE , 1979 .

[14]  C. D. Rakopoulos,et al.  Development and validation of a multi-zone combustion model for performance and nitric oxide formation in syngas fueled spark ignition engine , 2008 .

[15]  Andrés Melgar,et al.  Utilization of a Quasi-Dimensional Model for Predicting Pollutant Emissions in SI Engines , 1999 .

[16]  J. Heywood,et al.  Development and use of a cycle simulation to predict si engine efficiency and NOx emissions , 1979 .

[17]  James C. Keck,et al.  EXPERIMENTAL AND THEORETICAL INVESTIGATION OF TURBULENT BURNING MODEL FOR INTERNAL COMBUSTION ENGINES , 1974 .

[18]  Enrico Mattarelli,et al.  A quasi-dimensional combustion model for performance and emissions of SI engines running on hydrogen–methane blends , 2010 .

[19]  B. Boust Étude expérimentale et modélisation des pertes thermiques pariétales lors de l'interaction flamme–paroi instationnaire , 2006 .

[20]  Evangelos G. Giakoumis,et al.  Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model , 2009 .

[21]  C. R. Stone,et al.  Modeling of nitric oxide formation in spark ignition engines with a multizone burned gas , 1995 .

[22]  J. Hvězda,et al.  Multi-Zone Models of Combustion and Heat Transfer Processes in SI Engines , 2011 .