Isotopic and trace element constraints on the petrogenesis of lavas from the Mount Adams volcanic field, Washington

[1]  P. Reiners,et al.  Temporal–compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California , 2008 .

[2]  C. Mercer,et al.  Experimental studies of the P–T–H2O near-liquidus phase relations of basaltic andesite from North Sister Volcano, High Oregon Cascades: constraints on lower-crustal mineral assemblages , 2008 .

[3]  M. C. Rowe,et al.  Segmentation of the Cascade Arc as indicated by Sr and Nd isotopic variation among diverse primitive basalts , 2008 .

[4]  T. Plank,et al.  Astoria Fan sediments, DSDP site 174, Cascadia Basin: Hf-Nd-Pb constraints on provenance and outburst flooding , 2006 .

[5]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[6]  W. Leeman,et al.  Petrologic constraints on the thermal structure of the Cascades arc , 2005 .

[7]  L. Borg,et al.  Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades , 2004 .

[8]  J. Brophy,et al.  Variable Impact of the Subducted Slab on Aleutian Island Arc Magma Sources: Evidence from Sr, Nd, Pb, and Hf Isotopes and Trace Element Abundances , 2004 .

[9]  J. Blundy,et al.  The extent of U-series disequilibria produced during partial melting of the lower crust with implications for the formation of the Mount St. Helens dacites , 2004 .

[10]  B. Beard,et al.  High precision Lu and Hf isotope analyses of both spiked and unspiked samples: A new approach , 2004 .

[11]  B. Wood,et al.  Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa , 2003 .

[12]  N. Chatterjee,et al.  Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends , 2003 .

[13]  E. Widom,et al.  The nature of metasomatism in the sub-arc mantle wedge: evidence from Re–Os isotopes in Kamchatka peridotite xenoliths , 2003 .

[14]  W. Hildreth,et al.  New osmium isotope evidence for intracrustal recycling of crustal domains with discrete ages , 2003 .

[15]  J. Foden,et al.  Rates and Processes of Potassic Magma Evolution beneath Sangeang Api Volcano, East Sunda Arc, Indonesia , 2003 .

[16]  K. Righter,et al.  Genesis of primitive, arc-type basalt: Constraints from Re, Os, and Cl on the depth of melting and role of fluids , 2002 .

[17]  C. Johnson,et al.  Osmium isotope constraints on lower crustal recycling and pluton preservation at Lassen Volcanic Center, CA , 2002 .

[18]  J. Blichert‐Toft,et al.  Ancient and Modern Subduction Zone Contributions to the Mantle Sources of Lavas from the Lassen Region of California Inferred from Lu–Hf Isotopic Systematics , 2002 .

[19]  S. Foley,et al.  Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions , 2002 .

[20]  J. Chesley,et al.  Trace element and isotopic evidence for two types of crustal melting beneath a High Cascade volcanic center, Mt. Jefferson, Oregon , 2001 .

[21]  B. Wood,et al.  High field strength element/rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities , 2001 .

[22]  T. Grove,et al.  Hot, shallow mantle melting under the Cascades volcanic arc , 2001 .

[23]  R. Walker,et al.  Re-Os isotopic systematics of primitive lavas from the Lassen region of the Cascade arc, California , 2000 .

[24]  R. Duncan,et al.  Young basalts of the central Washington Cascades, flux melting of the mantle, and trace element signatures of primary arc magmas , 2000 .

[25]  R. Carlson,et al.  Isotopic constraints on time scales and mechanisms of slab material transport in the mantle wedge: evidence from the Simcoe mantle xenoliths, Washington, USA , 1999 .

[26]  S. Poli,et al.  Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation , 1998 .

[27]  B. Wood,et al.  Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus , 1998 .

[28]  L. Borg,et al.  The petrogenesis of felsic calc-alkaline magmas from the southernmost Cascades, California: origin by partial melting of basaltic lower crust , 1998 .

[29]  S. Hart,et al.  Re–Os isotope evidence for the composition, formation and age of the lower continental crust , 1998, Nature.

[30]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[31]  Tom Parsons,et al.  A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin , 1998 .

[32]  R. Carlson,et al.  Radiogenic Os in primitive basalts from the northwestern U.S.A.: Implications for petrogenesis , 1997 .

[33]  W. Hildreth,et al.  Recent eruptions of Mount Adams, Washington Cascades, USA , 1997 .

[34]  W. Hildreth,et al.  Primitive magmas at five Cascade volcanic fields; melts from hot, heterogeneous sub-arc mantle , 1997 .

[35]  L. Borg,et al.  Olivine and chromian spinel in primitive calc-alkaline and tholeiitic lavas from the southernmost Cascade Range, California; a reflection of relative fertility of the source , 1997 .

[36]  D. Swanson,et al.  Diverse primitive magmas in the Cascade Arc, northern Oregon and southern Washington , 1997 .

[37]  L. Borg,et al.  The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the Southernmost Cascades, California , 1997 .

[38]  R. Carlson,et al.  Osmium Recycling in Subduction Zones , 1996, Science.

[39]  M. Kohn,et al.  UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating , 1995 .

[40]  C. Bacon,et al.  Multiple Isotopic Components in Quaternary Volcanic Rocks of the Cascade Arc near Crater Lake, Oregon , 1994 .

[41]  D. Lowry,et al.  Oxygen isotope composition of mantle peridotite , 1994 .

[42]  W. Hildreth,et al.  Potassium-argon geochronology of a basalt-andesite-dacite arc system: The Mount Adams volcanic field, Cascade Range of southern Washington , 1994 .

[43]  G. A. Wandless,et al.  Origin of compositional zonation (high‐alumina basalt to basaltic andesite) in the Giant Crater Lava Field, Medicine Lake Volcano, northern California , 1991 .

[44]  T. Grove,et al.  High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California , 1991 .

[45]  Ren A. Thompson,et al.  Isotopic composition of Oligocene mafic volcanic rocks in the Northern Rio Grande Rift: Evidence for contributions of ancient intraplate and subduction magmatism to evolution of the lithosphere , 1991 .

[46]  F. McDermott,et al.  Element fluxes associated with subduction related magmatism , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[47]  N. Rogers,et al.  Compositional Diversity of Late Cenozoic Basalts in a Transect Across the Southern Washington Cascades: Implications for Subduction Zone Magmatism , 1990 .

[48]  J. Delaney,et al.  Spatial and temporal evolution of magmatic systems beneath the endeavour segment, Juan de Fuca Ridge: Tectonic and petrologic constraints , 1990 .

[49]  T. Bullen,et al.  Trace element and isotopic constraints on magmatic evolution at Lassen Volcanic Center , 1990 .

[50]  D. Sherrod,et al.  Quaternary extrusion rates of the Cascade Range, northwestern United States and southern British Columbia , 1990 .

[51]  A. Saunders,et al.  Magmatism in the Ocean Basins , 1989 .

[52]  T. Druitt,et al.  Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon , 1989 .

[53]  T. Druitt,et al.  Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon , 1988 .

[54]  E. Hegner,et al.  Pb, Sr, and Nd isotopes in basalts and sulfides from the Juan de Fuca Ridge , 1987 .

[55]  A. Hofmann,et al.  Isotope geochemistry of Pacific Mid‐Ocean Ridge Basalt , 1987 .

[56]  H. Taylor,et al.  Igneous rocks; I, Processes of isotopic fractionation and isotope systematics , 1986 .

[57]  S. Hart A large-scale isotope anomaly in the Southern Hemisphere mantle , 1984, Nature.

[58]  W. Hart,et al.  Areal distribution and age of low-K, high-alumina olivine tholeiite magmatism in the northwestern Great Basin , 1984 .

[59]  T. M. Harrison,et al.  Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types , 1983 .

[60]  W. E. Stephens,et al.  The isotopic and chemical evolution of Mount St. Helens , 1983 .

[61]  J. Gill Orogenic Andesites and Plate Tectonics , 1981 .

[62]  D. Wood,et al.  A RE-APPRAISAL OF THE USE OF TRACE ELEMENTS TO CLASSIFY AND DISCRIMINATE BETWEEN MAGMA SERIES ERUPTED IN DIFFERENT TECTONIC SETTINGS , 1979 .

[63]  S. Church The Cascade Mountains revisited: A re-evaluation in light of new lead isotopic data , 1976 .

[64]  A. Miyashiro Volcanic rock series in island arcs and active continental margins , 1974 .

[65]  B. Doe,et al.  Variations in Lead-Isotopic Compositions in Mesozoic Granitic Rocks of California: A Preliminary Investigation , 1973 .

[66]  G. Tilton,et al.  Lead and Strontium Isotopic Studies in the Cascade Mountains: Bearing on Andesite Genesis , 1973 .

[67]  C. Newman Ancient and Modern , 1971, Nature.

[68]  W. Hildreth Quaternary magmatism in the Cascades : geologic perspectives , 2007 .

[69]  G. Abers,et al.  Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents: SUBDUCTION ZONE MINERALOGY AND PHYSICAL PROPERTIES , 2003 .

[70]  B. Wood,et al.  Trace element partitioning , 2003 .

[71]  Simon M. Peacock,et al.  Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H 2 O contents , 2003 .

[72]  S. Bowring,et al.  The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California , 2002 .

[73]  N. Shimizu,et al.  Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems , 2000 .

[74]  J. Chesley,et al.  Crust–mantle interaction in large igneous provinces: Implications from the Re–Os isotope systematics of the Columbia River flood basalts , 1998 .

[75]  W. Hildreth,et al.  Geologic map of the Mount Adams volcanic field, Cascade Range of southern Washington , 1995 .

[76]  Barbican Art Gallery,et al.  Ancient and Modern , 1992 .

[77]  W. Mooney,et al.  Chapter 9: Regional crustal structure and tectonics of the Pacific Coastal States; California, Oregon, and Washington , 1989 .

[78]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[79]  P. A. Baedecker Methods for geochemical analysis , 1987 .