Design of back propagation optimized Nagar-Bardini structure-based interval type-2 fuzzy logic systems for fuzzy identification

In recent years, fuzzy identification based on system identification theory has become a hot academic topic. Interval type-2 fuzzy logic systems (IT2 FLSs) have become a rising technology. This paper designs a type of Nagar-Bardini (NB) structure-based singleton IT2 FLSs for fuzzy identification problems. The antecedents of primary membership functions of IT2 FLSs are chosen as Gaussian type-2 primary membership functions with uncertain standard deviations. Then, the back propagation algorithms are used to tune the parameters of IT2 FLSs according to the chain rule of derivation. Compared with the type-1 fuzzy logic systems, simulation studies show that the proposed IT2 FLSs can obtain better abilities of generalization for fuzzy identification problems.

[1]  Yang Chen,et al.  Study on Sampling Based Discrete Nie-Tan Algorithms for Computing the Centroids of General Type-2 Fuzzy Sets , 2019, IEEE Access.

[2]  Jerry M. Mendel,et al.  Computing derivatives in interval type-2 fuzzy logic systems , 2004, IEEE Transactions on Fuzzy Systems.

[3]  Oscar Castillo,et al.  A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics , 2019, Eng. Appl. Artif. Intell..

[4]  Shaocheng Tong,et al.  Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems , 2014, Science China Information Sciences.

[5]  MelinPatricia,et al.  A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems , 2015, SOCO 2015.

[6]  Yang Chen,et al.  Forecasting by designing Mamdani general type-2 fuzzy logic systems optimized with quantum particle swarm optimization algorithms , 2019, Trans. Inst. Meas. Control.

[7]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[8]  A. Rosenfeld,et al.  IEEE TRANSACTIONS ON SYSTEMS , MAN , AND CYBERNETICS , 2022 .

[9]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[10]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[11]  Richard D. Braatz,et al.  On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.

[12]  Yang Chen,et al.  Study on weighted Nagar-Bardini algorithms for centroid type-reduction of interval type-2 fuzzy logic systems , 2018, J. Intell. Fuzzy Syst..

[13]  Dongrui Wu,et al.  Recommendations on Designing Practical Interval Type-2 Fuzzy Systems , 2019, Eng. Appl. Artif. Intell..

[14]  Oscar Castillo,et al.  Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO , 2016, Appl. Soft Comput..

[15]  Oscar Castillo,et al.  Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control , 2015, Inf. Sci..

[16]  Jerry M. Mendel,et al.  Design of Novel Interval Type-2 Fuzzy Controllers for Modular and Reconfigurable Robots: Theory and Experiments , 2011, IEEE Transactions on Industrial Electronics.

[17]  Oscar Castillo,et al.  Comparative analysis of noise robustness of type 2 fuzzy logic controllers , 2018, Kybernetika.

[18]  Oscar Castillo,et al.  New Methodology to Approximate Type-Reduction Based on a Continuous Root-Finding Karnik Mendel Algorithm , 2017, Algorithms.

[19]  Yang Chen Study on sampling-based discrete noniterative algorithms for centroid type-reduction of interval type-2 fuzzy logic systems , 2020, Soft Comput..

[20]  Dazhi Wang,et al.  Forecasting studies by designing Mamdani interval type-2 fuzzy logic systems: With the combination of BP algorithms and KM algorithms , 2016, Neurocomputing.

[21]  Jerry M. Mendel,et al.  Simplified Interval Type-2 Fuzzy Logic Systems , 2013, IEEE Transactions on Fuzzy Systems.

[22]  Shaocheng Tong,et al.  Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties , 2010, Science China Information Sciences.

[23]  Jerry M. Mendel,et al.  Super-Exponential Convergence of the Karnik–Mendel Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2007, IEEE Transactions on Fuzzy Systems.

[24]  Yang Chen,et al.  Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik–Mendel algorithms , 2018, Soft Comput..

[25]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[26]  Dazhi Wang,et al.  Study on permanent magnetic drive forecasting by designing Takagi Sugeno Kang type interval type-2 fuzzy logic systems , 2018, Trans. Inst. Meas. Control.

[27]  Chen Yang,et al.  Forecasting by TSK general type‐2 fuzzy logic systems optimized with genetic algorithms , 2018 .

[28]  Yeong-Hwa Chang,et al.  Simplified type-2 fuzzy sliding controller for wing rock system , 2012, Fuzzy Sets Syst..

[29]  Jerry M. Mendel,et al.  Study on enhanced Karnik-Mendel algorithms: Initialization explanations and computation improvements , 2012, Inf. Sci..

[30]  Juan Luis Castro,et al.  Fuzzy systems with defuzzification are universal approximators , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[31]  Huijun Gao,et al.  Improving the Speed of Center of Sets Type Reduction in Interval Type-2 Fuzzy Systems by Eliminating the Need for Sorting , 2017, IEEE Transactions on Fuzzy Systems.

[32]  Shaocheng Tong,et al.  FUZZY REASONING MODELS AND ALGORITHMS ON TYPE-2 FUZZY SETS , 2008 .

[33]  Francisco Chiclana,et al.  Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set , 2013, Int. J. Approx. Reason..

[34]  Ahmad M. El-Nagar,et al.  Simplified interval type-2 fuzzy logic system based on new type-reduction , 2014, J. Intell. Fuzzy Syst..

[35]  Bart Kosko,et al.  Fuzzy Systems as Universal Approximators , 1994, IEEE Trans. Computers.

[36]  Oscar Castillo,et al.  Interval type-2 fuzzy logic and modular neural networks for face recognition applications , 2009, Appl. Soft Comput..

[37]  Graham Kendall,et al.  On Nie-Tan Operator and Type-Reduction of Interval Type-2 Fuzzy Sets , 2018, IEEE Transactions on Fuzzy Systems.

[38]  Patricia Melin,et al.  A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems , 2015, Soft Comput..

[39]  Oscar Castillo,et al.  A review on the design and optimization of interval type-2 fuzzy controllers , 2012, Appl. Soft Comput..

[40]  Jerry M. Mendel,et al.  On KM Algorithms for Solving Type-2 Fuzzy Set Problems , 2013, IEEE Transactions on Fuzzy Systems.

[41]  Chia-Feng Juang,et al.  Evolutionary Robot Wall-Following Control Using Type-2 Fuzzy Controller With Species-DE-Activated Continuous ACO , 2013, IEEE Transactions on Fuzzy Systems.

[42]  Juan R. Castro,et al.  A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems , 2016, Inf. Sci..

[43]  Robert Ivor John,et al.  The collapsing method of defuzzification for discretised interval type-2 fuzzy sets , 2009, Inf. Sci..

[44]  Saeid Nahavandi,et al.  Load Forecasting Using Interval Type-2 Fuzzy Logic Systems: Optimal Type Reduction , 2014, IEEE Transactions on Industrial Informatics.