Inactivation Decoding of LT and Raptor Codes: Analysis and Code Design

In this paper, we analyze Luby transform (LT) and Raptor codes under inactivation decoding. A first-order analysis is introduced, which provides the expected number of inactivations for an LT code, as a function of the output distribution, the number of input symbols, and the decoding overhead. The analysis is then extended to the calculation of the distribution of the number of inactivations. In both cases, random inactivation is assumed. The developed analytical tools are then exploited to design LT and Raptor codes, enabling a tight control on the decoding complexity versus failure probability tradeoff. The accuracy of the approach is confirmed by numerical simulations.

[1]  Gerhard Bauch,et al.  LT code design for inactivation decoding , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[2]  Birgit Schotsch,et al.  Rateless coding in the finite length regime , 2014 .

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  Thomas E. Fuja,et al.  The Design and Performance of Distributed LT Codes , 2007, IEEE Transactions on Information Theory.

[5]  David Burshtein,et al.  Efficient maximum-likelihood decoding of LDPC codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[6]  Amin Shokrollahi,et al.  Analysis of the Second Moment of the LT Decoder , 2009, IEEE Transactions on Information Theory.

[7]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[8]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[9]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[10]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[11]  Marco Chiani,et al.  Performance versus overhead for fountain codes over Fq , 2010, IEEE Communications Letters.

[12]  Masoud Ardakani,et al.  On Raptor Code Design for Inactivation Decoding , 2012, IEEE Transactions on Communications.

[13]  Marco Chiani,et al.  Bounds on the Error Probability of Block Codes over the q-Ary Erasure Channel , 2013, IEEE Transactions on Communications.

[14]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[15]  Amin Shokrollahi,et al.  Theory and applications of Raptor codes , 2009 .

[16]  Peter Vary,et al.  The Performance of Short Random Linear Fountain Codes under Maximum Likelihood Decoding , 2011, 2011 IEEE International Conference on Communications (ICC).

[17]  Andrea Montanari,et al.  Maxwell Construction: The Hidden Bridge Between Iterative and Maximum a Posteriori Decoding , 2005, IEEE Transactions on Information Theory.

[18]  P. Maymounkov Online codes , 2002 .

[19]  Thomas Stockhammer,et al.  Raptor Forward Error Correction Scheme for Object Delivery , 2007, RFC.

[20]  Peter Vary,et al.  The performance of low-density random linear fountain codes over higher order galois fields under maximum likelihood decoding , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[21]  Richard M. Karp,et al.  Finite length analysis of LT codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[22]  Gerhard Bauch,et al.  Distance Spectrum of Fixed-Rate Raptor Codes With Linear Random Precoders , 2015, IEEE Journal on Selected Areas in Communications.

[23]  Amin Shokrollahi,et al.  New model for rigorous analysis of LT-codes , 2006, 2006 IEEE International Symposium on Information Theory.

[24]  Gerhard Bauch,et al.  Enhancing the LT Component of Raptor Codes for Inactivation Decoding , 2015 .

[25]  Gerhard Bauch,et al.  Bounds on the Error Probability of Raptor Codes , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[26]  Peter Vary,et al.  Analysis of LT Codes over Finite Fields under Optimal Erasure Decoding , 2013, IEEE Communications Letters.

[27]  Branka Vucetic,et al.  Distributed Raptor Coding for Erasure Channels: Partially and Fully Coded Cooperation , 2013, IEEE Transactions on Communications.

[28]  Michael Mitzenmacher,et al.  A digital fountain approach to asynchronous reliable multicast , 2002, IEEE J. Sel. Areas Commun..

[29]  Scott Kirkpatrick,et al.  Optimization by Simmulated Annealing , 1983, Sci..

[30]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[31]  Jorma T. Virtamo,et al.  Optimal Degree Distribution for LT Codes with Small Message Length , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[32]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[33]  Francesco Chiti,et al.  Rateless packet approach for data gathering in wireless sensor networks , 2010, IEEE Journal on Selected Areas in Communications.

[34]  Gerhard Bauch,et al.  Inactivation decoding analysis for LT codes , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[35]  John J. Metzner,et al.  An Improved Broadcast Retransmission Protocol , 1984, IEEE Trans. Commun..

[36]  Shenghao Yang,et al.  Finite-length analysis of BATS codes , 2013, 2013 International Symposium on Network Coding (NetCod).

[37]  Andrew M. Odlyzko,et al.  Solving Large Sparse Linear Systems over Finite Fields , 1990, CRYPTO.

[38]  Marco Chiani,et al.  Maximum Likelihood Erasure Decoding of LDPC Codes: Pivoting Algorithms and Code Design , 2012, IEEE Transactions on Communications.