Histone methyltransferase SUV39H2 regulates cell growth and chemosensitivity in glioma via regulation of hedgehog signaling

[1]  X. Tan,et al.  Elevated SUV39H2 attributes to the progression of nasopharyngeal carcinoma via regulation of NRIP1. , 2019, Biochemical and biophysical research communications.

[2]  Jian Wang,et al.  Identification of SUV39H2 as a potential oncogene in lung adenocarcinoma , 2018, Clinical Epigenetics.

[3]  B. Deneen,et al.  A glial blueprint for gliomagenesis , 2018, Nature Reviews Neuroscience.

[4]  Xin-gen Zhu,et al.  HP1α is highly expressed in glioma cells and facilitates cell proliferation and survival. , 2017, Biochemical and biophysical research communications.

[5]  Shawn M. Gillespie,et al.  Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. , 2017, Cell stem cell.

[6]  M. Weller,et al.  Therapeutic options in recurrent glioblastoma--An update. , 2016, Critical reviews in oncology/hematology.

[7]  Ping Zhang,et al.  The hedgehog antagonist HHIP as a favorable prognosticator in glioblastoma , 2016, Tumor Biology.

[8]  D. Nam,et al.  WNT signaling in glioblastoma and therapeutic opportunities , 2016, Laboratory Investigation.

[9]  Yusuke Nakamura,et al.  Targeting Suppressor of Variegation 3-9 Homologue 2 (SUV39H2) in Acute Lymphoblastic Leukemia (ALL) , 2015, Translational oncology.

[10]  B. Meléndez,et al.  Epigenetic regulation of human hedgehog interacting protein in glioma cell lines and primary tumor samples , 2015, Tumor Biology.

[11]  P. Korkolopoulou,et al.  Emerging Role of Linker Histone Variant H1x as a Biomarker with Prognostic Value in Astrocytic Gliomas. A Multivariate Analysis including Trimethylation of H3K9 and H4K20 , 2015, PloS one.

[12]  Yusuke Nakamura,et al.  Critical role of lysine 134 methylation on histone H2AX for γ-H2AX production and DNA repair , 2014, Nature Communications.

[13]  Jan-Gowth Chang,et al.  Histone-modifying genes as biomarkers in hepatocellular carcinoma. , 2014, International journal of clinical and experimental pathology.

[14]  A. Papavassiliou,et al.  Role of Histone Lysine Methyltransferases SUV39H1 and SETDB1 in Gliomagenesis: Modulation of Cell Proliferation, Migration, and Colony Formation , 2014, NeuroMolecular Medicine.

[15]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[16]  M. Mori,et al.  Cancer‐associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo , 2013, Cancer science.

[17]  L. Zon,et al.  The Histone Methyltransferase SUV39H1 Suppresses Embryonal Rhabdomyosarcoma Formation in Zebrafish , 2013, PloS one.

[18]  A. Papavassiliou,et al.  Deregulated Chromatin Remodeling in the Pathobiology of Brain Tumors , 2013, NeuroMolecular Medicine.

[19]  L. Parada,et al.  Malignant Glioma: Lessons from Genomics, Mouse Models, and Stem Cells , 2012, Cell.

[20]  Hideo Nakamura,et al.  Essential role of the Hedgehog signaling pathway in human glioma‐initiating cells , 2011, Cancer science.

[21]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[22]  H. Yamamoto,et al.  Transcriptional silencing of hedgehog‐interacting protein by CpG hypermethylation and chromatic structure in human gastrointestinal cancer , 2007, The Journal of pathology.

[23]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[24]  D. Farkas,et al.  Isolation of cancer stem cells from adult glioblastoma multiforme , 2004, Oncogene.

[25]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[26]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[27]  Beatrix Ueberheide,et al.  Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. , 2003, Molecular cell.

[28]  I. Germano,et al.  Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. , 2003, Journal of neurosurgery.

[29]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[30]  Andrew J. Bannister,et al.  Rb targets histone H3 methylation and HP1 to promoters , 2001, Nature.

[31]  M. Mattéi,et al.  Isolation and Characterization ofSuv39h2, a Second Histone H3 Methyltransferase Gene That Displays Testis-Specific Expression , 2000, Molecular and Cellular Biology.

[32]  Pao-Tien Chuang,et al.  Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein , 1999, Nature.

[33]  Albert Jeltsch,et al.  Activity and specificity of the human SUV39H2 protein lysine methyltransferase. , 2015, Biochimica et biophysica acta.

[34]  Michael Weller,et al.  Standards of care for treatment of recurrent glioblastoma--are we there yet? , 2013, Neuro-oncology.

[35]  A. Sonabend,et al.  Inhibition of Sonic Hedgehog and Notch Pathways Enhances Sensitivity of CD133+ Glioma Stem Cells to Temozolomide Therapy , 2011, Molecular medicine.

[36]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[37]  T. Jenuwein,et al.  Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases , 2004, Nature Genetics.

[38]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..